

# MAHATMA GANDHI UNIVERSITY SCHOOL OF COMPUTER SCIENCES

M.Sc. Computer Science

# Scheme and Syllabi in OBE Framework from 2021 Admission onwards

(based on CSS 2020 Regulations)

SUBMITTED IN

December 2021

#### **Vision**

To emerge as a centre of excellence in knowledge generation and dissemination for moulding technically competent and socially committed computer scientists/professionals for nation building.

#### **Mission**

To provide a conducive environment for teaching, research and learning leading to the overall holistic development of students

To foster research and extension activities for the development of the society

To develop skilled manpower for providing intellectual leadership to the community so as to meet global demands

#### MAHATMA GANDHI UNIVERSITY

#### SCHOOL OF COMPUTER SCIENCES

**SCHEME 2021** 

PROGRAMME: M.Sc. Computer Science FACULTY OF SCIENCE

DURATION: 4 Semesters Minimum Total Credits Required: 84

Revised Syllabus 2021: Semester wise List of Courses Semester I

| _ | ici | Bulle | r |
|---|-----|-------|---|
|   |     |       |   |
|   |     |       |   |

| Schester 1                                |                              |    |          |       |         |
|-------------------------------------------|------------------------------|----|----------|-------|---------|
| Course Code                               | Course Code Course Title     |    | ours/We  |       | Credits |
| Course Code                               | Course Title                 | L  | T        | P     | Creans  |
| CO M 21 C 11                              | Operating Systems and        | 2  | 1        | 2     | 4       |
| CO M 21 C 11                              | Virtualization               | 3  | 1        | 2     | 4       |
| CO M 21 C 12                              | Multicore Microprocessors    | 2  |          | 2     | ,       |
|                                           | and Parallel Programming     | 3  | 2        | 3     | 4       |
| CO M 21 C 13                              | Algorithms and Complexity    | 3  | 2        | 3     | 4       |
| CO M 21 C 14                              | Artificial Intelligence      | 3  | 2        | -     | 4       |
| CO M 21 E 1*                              | Elective – I                 | 3  | 1        | 2     | 3       |
| CO M 21 C 15                              | Case Study using Python-Lab  | -  | 1        | 6     | 2       |
|                                           | Total Credits (Semester I)   |    |          |       | 21      |
|                                           | Semester I                   |    | _        |       |         |
| CO M 21 C 21                              | Machine Learning             | 3  | 1        | 2     | 4       |
| CO M 21 C 22                              | Digital Image Processing     | 3  | 2        | 3     | 4       |
| CO M 21 C 23                              | Data Mining                  | 3  | 2        | 3     | 4       |
| CO M 21 C 24                              | Software Engineering         | 3  | -        | 2     | 4       |
| CO M 21 E 2*                              | Elective – II                | 3  | 1        | 2     | 3       |
| CO M 21 C 25 Minor Project using Advanced |                              |    |          |       |         |
|                                           | Java and Object Oriented     | -  | 1        | 6     | 2       |
|                                           | Analysis and Design –Lab     |    |          |       |         |
| Total Credits(Semester II)                |                              |    |          |       | 21      |
| GO 14 44 644                              | Semester III                 |    | <u> </u> | ı     | , 1     |
| CO M 21 C 31                              | Theoretical Computer Science | 3  | 2        | -     | 4       |
| CO M 21 C 32                              | Deep Learning                | 3  | 2        | 1     | 4       |
| CO M 21 E 3*                              | Elective – III               | 3  | 1        | 2     | 3       |
| CO M 21 E 3*                              | Elective – IV                | 3  | 1        | 2     | 3       |
| CO M 21 C 33                              | Deep Learning-Lab            | -  | 1        | 6     | 2       |
| CO M 21 C 34                              | Advanced Software            |    |          |       | _       |
|                                           | Development Tools-Lab        | -  | 1        | 3     | 2       |
| CO M 21 O 31                              | Open Course                  | 3  | 1        | 2     | 4       |
|                                           | Total Credits(Semester III)  |    | <u>I</u> |       | 22      |
|                                           | Semester I                   | V  |          |       |         |
| CO M 21 C 41                              | Main Project&                | Ī  |          |       |         |
|                                           | Comprehensive Viva-voce      | Oı | ne Seme  | ester | 20      |
|                                           |                              |    |          |       |         |
| Total Credits(Semester IV)                |                              |    |          | 20    |         |

Total Credits for the M Sc Programme : 84

### **ELECTIVES**

|              | Course Code Course Title                             |   | Hours/W | /eek | G 14    |
|--------------|------------------------------------------------------|---|---------|------|---------|
| Course Code  |                                                      |   | T       | P    | Credits |
| CO M 21 E 11 | Cyber Security and Cyber Laws                        | 3 | 1       | 2    | 3       |
| CO M 21 E 12 | Advanced Data Structures                             | 3 | 1       | 2    | 3       |
| CO M 21 E 13 | 3D Graphics                                          | 3 | 1       | 2    | 3       |
| CO M 21 E 21 | Wireless Communication and<br>Sensor Networks        | 3 | 1       | 2    | 3       |
| CO M 21 E 22 | Cyber Physical Systems                               | 3 | 1       | 2    | 3       |
| CO M 21 E 23 | Distributed Systems and Parallel<br>Computing        | 3 | 1       | 2    | 3       |
| CO M 21 E 31 | Data Science                                         | 3 | 1       | 2    | 3       |
| CO M 21 E 32 | Internet Of Things and Block<br>Chain Technologies   | 3 | 1       | 2    | 3       |
| CO M 21 E 33 | Cloud Computing                                      | 3 | 1       | 2    | 3       |
| CO M 21 E 34 | Fuzzy Logic and Nature Inspired Computing            |   | 1       | 2    | 3       |
| CO M 21 E 35 | Natural Language Processing                          | 3 | 1       | 2    | 3       |
| CO M 21 E 36 | Digital Signal Processing and<br>Speech Technologies | 3 | 1       | 2    | 3       |

### **Graduate Attributes of Mahatma Gandhi University**

| Critical Thinking and Analytical Reasoning Scientific            | Capability to analyse, evaluate and interpret evidence, arguments, claims, beliefs on the basis of empirical evidence; reflect relevant implications to the reality; formulate logical arguments; critically evaluate practices, policies and theories to develop knowledge and understanding; able toenvisage the reflective thought to the implication on the society.  Ability to analyse, discuss, interpret and draw conclusions from |
|------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Reasoning and Problem Solving                                    | quantitative/qualitative data and experimental evidences; and critically evaluate ideas, evidence and experiences from an unprejudiced and reasoned perspective; capacity to extrapolate from what one has learned and apply their competencies to solve problems and contextualise into research and apply one's learning to real life situations.                                                                                        |
| Multidisciplinary/ Interdisciplinary/ Transdisciplinary Approach | Acquire interdisciplinary /multidisciplinary/ transdisciplinary knowledge base as a consequence of the learning they engage with their programme of study; develop a collaborative multidisciplinary/ interdisciplinary/transdisciplinary- approach for formulate constructive arguments and rational analysis for achieving common goals and objectives.                                                                                  |
| Intra and Interpersonal Skills                                   | Ability to work effectively and respectfully with diverse teams; facilitate collaborative and coordinated effort on the part of a group, and act together as a group or a team in the interests of a common cause and work efficiently as a member of a team; lead the team to guide people to the right destination, in a smooth and efficient way.                                                                                       |
| Digital literacy                                                 | Capability to use ICT in a variety of learning situations, demonstrate ability to access, choose, collect and evaluate, and use a variety of relevant information sources; structure and evaluate those data for decision making.                                                                                                                                                                                                          |
| Global<br>Citizenship                                            | Building a sense of belonging to a common humanity and to become responsible and active global citizens. Appreciation and adaptation of different sociocultural setting.                                                                                                                                                                                                                                                                   |
| Social<br>Competency                                             | Possess knowledge of the values and beliefs of multiple cultures, appreciate and adapt to a global perspective; and capability to effectively engage in a multicultural society and interact respectfully, manage and lead with diverse groups.                                                                                                                                                                                            |
| Equity, Inclusiveness and Sustainability                         | Appreciate and embrace equity, inclusiveness and sustainability and diversity; acquire ethical and moral reasoning and values of unity, secularism and national integration to enable to act as dignified citizens;                                                                                                                                                                                                                        |

|                   | able to understand and appreciate diversity                                                                                                                                                                                                                                                                                                                                                                                                            |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Lifelong Learning | Continuous acquisition of knowledge and skills. Learn, unlearn and relearn based on changing ecosystem. "Learning how to learn", that are necessary for participating in learning activities throughout life, through self-paced and self-directed learning aimed at personal development, meeting economic, social and cultural objectives, and adapting to changing trades and demands of work place through knowledge/skill development/reskilling. |

### **Programme Specific Outcomes (PSO)**

| PSO1 | Critical Thinking and Evaluation Critically evaluate ideas, evidence and experiences from an unprejudiced and reasoned perspective;                                                                                                                                            |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PSO2 | Scientific Analysis and Reasoning Ability to analyse, discuss, interpret and draw conclusions from quantitative/ qualitative data and experimental evidences;                                                                                                                  |
| PSO3 | Problem Solving Capacity to extrapolate and apply their knowledge and competencies to solve problems and contextualise into research and develop relevant software solutions to real life problems.                                                                            |
| PSO4 | Multidisciplinary/Interdisciplinary/Transdisciplinary Approach<br>Acquiring knowledge and formulating solutions in interdisciplinary/multidisciplinary/transdisciplinary levels for problem solving in a collaborative environment.                                            |
| PSO5 | Communication Skills Ability to document, present and demonstrate complex problem solutions in a very clear and effective way with the aid of appropriate tools.                                                                                                               |
| PSO6 | Leadership Skills Ability to work effectively and lead respectfully with diverse teams, formulating a goal in a smooth and efficient way.                                                                                                                                      |
| PSO7 | Social Consciousness and Responsibility Ability to evolve as a socially committed and responsible scientist/software professional meeting global demands.                                                                                                                      |
| PSO8 | Moral and Ethical Reasoning Capable of demonstrating the ability to identify ethical issues related to software development and use ethical practices in all phases of software development/deployment and research and embrace moral/ethical values in conducting one's life. |
| PSO9 | Networking and Collaboration Acquire skills to be able to collaborate and network with scholars in an educational/, professional/research/industry organizations and individuals in India and abroad.                                                                          |
| PSO1 | Lifelong Learning Ability to acquire knowledge and skills through self-paced and self-directed learning and adapt to changing trends and demands of work place through knowledge/skill updation/reskilling.                                                                    |



### CO M 21 C 12 OPERATING SYSTEMS AND VIRTUALIZATION

#### **FIRST SEMESTER**

| School Name                                 | School of Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | mputer S    | ciences      |            |            |                            |
|---------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------|------------|------------|----------------------------|
| Programme                                   | M. Sc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | M. Sc.      |              |            |            |                            |
| Course Name                                 | Operating S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ystems an   | d Virtuali   | zation     |            |                            |
| Type of Course                              | Core                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |              |            |            |                            |
| Course Code                                 | CO M 21 C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11          |              |            |            |                            |
| Names of Academic<br>Staff & Qualifications | Prof. Dr. Bind                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             |              |            |            |                            |
| Course Summary & Justification              | The course provides a thorough discussion on the fundamentals of operating system design, relating these to contemporary design issues and current directions in the development of operating systems. The students will get acquainted with the design principles and implementation issues of contemporary operating systems. The students will also get a deep understanding of various types of virtualization techniques, their advantages and disadvantages, in order to be able to apply them in a practical setting. For illustrating the concepts, four operating systems have been chosen as case studies.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |              |            |            |                            |
| Semester                                    | Ι                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |              |            |            |                            |
| Total<br>StudentLearningTim<br>e (SLT)      | Learning<br>Approach                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Lectur<br>e | Tutoria<br>1 | Practica 1 | Other<br>s | Total<br>LearningHour<br>s |
|                                             | Explicit Teaching Seminar, Assignment , case Study etc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 42          | 14           | 28         | 36         | 120                        |
| Pre-requisite                               | Overview of Overvi |             | •            | -          | ~ .        | n – Processes,             |



### CO M 21 C 11 OPERATING SYSTEMS AND VIRTUALIZATION

#### **COURSE OUTCOMES (CO)**

| CO<br>No. | <b>Expected Course Outcome</b>                                                                                                                                                                                  | Learning<br>Domains | PSO No.     |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-------------|
| 1         | Analyse the key design areas that have been instrumental in the development of modern operating systems                                                                                                         | U, An               | 1           |
| 2         | Elucidate OS design issues raised by the introduction of multiprocessor and multicore organization.                                                                                                             | An                  | 1,2         |
| 3         | Compare and Analyse the structure, functional elements and features of Windows, Traditional and Modern UNIX, Linux and Android operating systems.                                                               | An                  | 1,2,4       |
| 4         | Critically examine the requirements for process control by the OS and analyse the issues involved in the execution of OS code.                                                                                  | A, An               | 1,2,        |
| 5         | Develop programs implementing multithreading.                                                                                                                                                                   | U, A                | 1,2,3,4     |
| 6         | Compare and Analyse the process and thread management, the concurrency and synchronization methods and the virtual memory management mechanisms in UNIX, Linux, Solaris, Windows and Android operating systems. | R, U, An            | 1,2         |
| 7         | Identify and analyse the key design issues in multiprocessor thread scheduling and some of the key approaches to scheduling and understand the requirements imposed by real-time scheduling.                    | An                  | 1,2,3       |
| 8         | Analyse and compare the scheduling methods used in Linux, UNIX SVR4, and Windows 10.                                                                                                                            | U,An                | 1,2         |
| 9         | Critically examine some of the key issues in the design of OS support for I/O and describe the I/O mechanisms in UNIX, Linux, and Windows.                                                                      | U, An               | 1,2         |
| 10        | Define and discuss virtual machines and virtualization and conceptualize and implement the various approaches to virtualization.                                                                                | U, A, An            | 1,2,3       |
| 11        | Conceptualize, formulate and design a sample operating system and document, present and demonstrate concepts in a very clear and effective way with the aid of appropriate tools.                               | U, A, An, C, E      | 1,2,3,5,6,1 |
| *Reme     | mber (R), Understand (U), Apply (A), Analyse (An), Evaluate                                                                                                                                                     | (E), Create (C)     | , Skill (S) |



### CO M 21 C 11 OPERATING SYSTEMS AND VIRTUALIZATION

### **COURSE CONTENT Content for Classroom transaction (Sub-units)**

| Unit     | Course description                                                                                                                                                                                                                                                                                                                                                                                                                                      | Hrs | CO No.   |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----------|
| UNIT I   | Introduction - Characteristics of Modern Operating Systems, Symmetric Multiprocessing and Micro-kernels, Virtual Machines, OS Design Considerations for Multiprocessor and Multicore, Windows Overview, Modern UNIX Systems, Linux, Android.                                                                                                                                                                                                            | 12  | 1,2,3    |
| UNIT II  | Processes and Threads - Process Description and Control, Security issues, UNIX SVR4 Process Management, Threads, Windows Process and Thread Management, Solaris Thread and SMP Management, Linux Process and Thread Management, Android Process and Thread Management, Unix Concurrency Mechanisms, Linux Kernel Concurrency Mechanisms, Solaris Thread Synchronization Primitives, Windows Concurrency Mechanisms, Android Interprocess Communication. | 20  | 4,5,6,11 |
| UNIT III | NIX and Solaris Memory Management, Linux Memory Management, Windows Memory Management, Android Memory Management.  Scheduling - Traditional UNIX Scheduling, Multiprocessor and Multicore Scheduling, Realtime Scheduling, Linux Scheduling, UNIX SVR4 Scheduling, Windows Scheduling.                                                                                                                                                                  | 16  | 7,8,11   |
| UNIT IV  | and Files - UNIX SVR4 I/O, Linux I/O, Windows I/O, Unix File Management, Linux Virtual File Systems, Windows File System, Android File Management.                                                                                                                                                                                                                                                                                                      | 16  | 9,11     |
| UNIT V   | Virtualization Concepts: Introduction to Virtual machines; Process Virtual Machines, System Virtual Machines, Multiprocessor Virtualization, Applications for VM Technology Approaches to Virtualization: Hypervisors, Containers, Processor Issue, Memory Management, I/O Management, VMware ESXi, Microsoft Hyper-V and Xen Variants, Java VM,                                                                                                        | 20  | 10,11    |



### CO M 21 C 11 OPERATING SYSTEMS AND VIRTUALIZATION

| Linux VServer Virtual Machine Architecture, |  |
|---------------------------------------------|--|
| Android Virtual Machine.                    |  |
|                                             |  |

### **COURSE CONTENT Content for Classroom Transaction (Sub-units)**

| Teaching and Learning | Classroom Procedure (Mode of transaction)                                                                                                                                                                                                                                     |  |  |  |
|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Approach              | Direct Instruction: Brain storming lecture, Explicit Teaching, E-learning, Interactive Instruction: Active co-operative learning, Seminar, Group Assignments, Authentic learning: Library work and Group discussion, Presentation by individual student/ Group representative |  |  |  |
| Assessment<br>Types   | Mode of Assessment                                                                                                                                                                                                                                                            |  |  |  |
| Types                 | A. Continuous Internal Assessment (CIA)                                                                                                                                                                                                                                       |  |  |  |
|                       | Internal Tests – Minimum Two (Extended answers /                                                                                                                                                                                                                              |  |  |  |
|                       | Practical )                                                                                                                                                                                                                                                                   |  |  |  |
|                       | • Seminar –                                                                                                                                                                                                                                                                   |  |  |  |
|                       | <ul> <li>Research Literature Review</li> </ul>                                                                                                                                                                                                                                |  |  |  |
|                       | <ul> <li>Report Writing</li> </ul>                                                                                                                                                                                                                                            |  |  |  |
|                       | <ul> <li>Presentation</li> </ul>                                                                                                                                                                                                                                              |  |  |  |
|                       | <ul> <li>Assignment – Written, Practical, Oral Presentation and</li> </ul>                                                                                                                                                                                                    |  |  |  |
|                       | Viva                                                                                                                                                                                                                                                                          |  |  |  |
|                       | Case study/ Mini project                                                                                                                                                                                                                                                      |  |  |  |
|                       | B. Semester End Examination                                                                                                                                                                                                                                                   |  |  |  |
|                       |                                                                                                                                                                                                                                                                               |  |  |  |

#### **REFERENCES**

- 1. William Stallings, *Operating Systems: Internals and Design Principles*, 9th Ed, Prentice-Hall.
- 2. Abraham Silberschatz, Peter Baer Galvin, Greg Gagne, *Operating System Concepts*, 8<sup>th</sup> Ed, John Wiley.
- 3. James E. Smith, Ravi Nair, Virtual Machines-Versatile Platforms for Systems and Processes, Morgan Kaufmann Publishers.



### CO M 21 C 11 OPERATING SYSTEMS AND VIRTUALIZATION

4. Matthew Portnoy, Virtualization- Essentials, John Wiley & Sons, Inc.

| Approval Date       |  |
|---------------------|--|
|                     |  |
| Version             |  |
| Approval by         |  |
| Implementation Date |  |



### CO M 21 C 12 MULTICORE MICROPROCESSORS AND PARALLEL PROGRAMMING

| SchoolName                                  | School of Comp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | puter Scie                                         | nces               |                     | School of Computer Sciences |                                   |  |  |
|---------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|--------------------|---------------------|-----------------------------|-----------------------------------|--|--|
| Programme                                   | M.Sc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | M.Sc.                                              |                    |                     |                             |                                   |  |  |
| Course Name                                 | Multicore Micr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Multicore Microprocessors and Parallel Programming |                    |                     |                             |                                   |  |  |
| Type of Course                              | Core                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                    |                    |                     |                             |                                   |  |  |
| Course Code                                 | CO M 21 C 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CO M 21 C 12                                       |                    |                     |                             |                                   |  |  |
| Names of Academic<br>Staff & Qualifications | Prof. Dr. Pushpa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Prof. Dr. Pushpalatha K P, PhD                     |                    |                     |                             |                                   |  |  |
| Course Summary & Justification              | The course covers the architectures of single and multi-core microprocessors, parallel computer architecture and various parallel programming models and features. The course further discusses parallel programming with OpenMP based on various models, memory subsystem including cache architectures. It also gives training in parallel programming with OpenCL for massively parallel GPUs.  The students after studying this course will be able to know the architecture and working of Pentium mircroprocessor and multicore mircroprocessors within a computer. They can understand and apply parallel programming structures and constructs using MPI and OpenCL with Multiple GPU cores for solving problems that need to handle huge quantity of data. Thus they will be equipped with various technical and programming skills to generate parallel executable software. They can get placed in jobs like hardware designers, system software engineers etc. and they are paid more than a normal software engineer or developer. |                                                    |                    |                     |                             |                                   |  |  |
| Semester                                    | I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                    |                    |                     |                             |                                   |  |  |
| Total<br>StudentLearningTim<br>e (SLT)      | Learning Approach  Explicit Teaching Seminar, Assignments etc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Lecture 42                                         | Tutoria<br>1<br>28 | Practica<br>1<br>42 | Other s                     | Total<br>Learning<br>Hours<br>120 |  |  |
| Pre-requisite                               | Knowledge in 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1<br>86 or 80x86                                   | Microproc          | cessors             |                             |                                   |  |  |



#### CO M 21 C 12 MULTICORE MICROPROCESSORS AND PARALLEL PROGRAMMING

#### **COURSE OUTCOMES (CO)**

| CO<br>No. | <b>Expected Course Outcome</b>                                                                                                                         | Learning<br>Domains | PSO No.           |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-------------------|
| 1         | Understand the difference in the features of single core microprocessors and multicore microprocessors.                                                | U                   | 2                 |
| 2         | Conceptualise the specific features of a parallel computer through Flynn's Taxonomy.                                                                   | U, An               | 1, 2              |
| 3         | Illustrate the application of various parallel architectures of Intel Core ix.                                                                         | U, R, An            | 2, 3              |
| 4         | Develop and test software that can do process to process communication using OpenMP.                                                                   | A, An, C            | 2, 5, 8, 10       |
| 5         | Demonstrate the interconnection networks possible within a multicore architecture.                                                                     | R, U, E             | 1, 2, 3, 5,<br>10 |
| 6         | Evaluate the performance of microprocessors based on memory hierarchy, cache performance and cache designing.                                          | A, An, E            | 1, 2, 3           |
| 7         | Research, identify and create alternate solutions for the basic Cache Coherence Issues                                                                 | An, A, C            | 2, 3, 7, 10       |
| 8         | Demo the application of the features of OpenCL to solve problems that needs massively Parallel data handling operations with GPU processors.           | A, C, S             | 3, 4, 5           |
| 9         | Prepare a report and do a presentation on the comparative study of the applications of MPI and OpenCL on various parallel architectures of Intel Core. | U, R, An            | 2, 3, 5, 8        |
| 10        | Document, present and demonstrate concepts of parallel programming in a very clear and effective way with the aid of appropriate tools.                | An, E, C            | 2, 5, 8           |
| *Reme     | ember (R), Understand (U), Apply (A), Analyse (An), Evalu                                                                                              | iate (E), Crea      | te (C),           |

Skill (S)



### CO M 21 C 12 MULTICORE MICROPROCESSORS AND PARALLEL PROGRAMMING

### **COURSE CONTENT Content for Classroom transaction (Sub-units)**

| Unit     | Course description                                                                                                                                                                                                                                                                                                                                                                                                                                  | Hrs | CO No. |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------|
| UNIT I   | Single Core To Multi-core Microprocessors: Introduction to Pentium IV Microprocessors, Architecture, Special Features, Registers, Addressing Modes, Memory Management, New Pentium Instructions. An Introduction to Multicore Processors, Single Core Vs Multicore Processors, Architecture and PIN Descriptions of Intel Core 2 Processors.                                                                                                        | 20  | 1,2    |
| UNIT II  | Parallel Computer Architecture, Flynn's Taxonomy of Parallel Architectures, Classes of MIMD Parallel Computers, Parallel Programming Models, Levels of Parallelism, Simultaneous Multithreading (SIMT) Architecture, Energy Consumption of Processors, Architecture of Multicore Processors, Case Study: Architecture of the Intel Core i7, Interconnection Networks, Parallel Computational Complexity, Laws and Theorems of Parallel Computation. | 22  | 3,5    |
| UNIT III | Shared Memory Parallel Programming using OpenMP, Shared Memory Programming Model, Multithreaded Programs, Parallelization of Loops, Parallel Tasks, MPI Processes and Messaging, Distributed Memory Computers, Message Passing Interface, Basic MPI Operations, Process-to-Process Communication, Collective MPI Communication, Sources of Deadlocks.                                                                                               | 24  | 4      |
| UNIT IV  | Introduction to Memory Hierarchy Organization, Basic Architectures of a Cache, Cache Performance, Prefetching, Cache Designing, Multicore Architecture, Physical Cache Organization, Logical Cache Organization, CaseStudies.  Introduction to Shared Memory Multiprocessors, Basic Cache Coherence Issues, Hardware Support for Synchronization, Memory Consistency Models, Advanced Cache Coherence Issues.                                       | 22  | 6,7    |



### CO M 21 C 12 MULTICORE MICROPROCESSORS AND PARALLEL PROGRAMMING

|        | OpenCL for Massively Parallel Graphic Processors,                     | 8,9,10 |
|--------|-----------------------------------------------------------------------|--------|
| UNIT V | Anatomy of a GPU, Programmer's View of OpenCL, Programming in OpenCL. |        |

| Teachi     | Classroom Procedure (Mode of transaction)                                        |  |  |  |  |
|------------|----------------------------------------------------------------------------------|--|--|--|--|
| ng and     | Direct Instruction: Brain storming lecture, Explicit Teaching, E-                |  |  |  |  |
| Learning   | learning, Interactive Instruction: Active co-operative learning, Seminar,        |  |  |  |  |
| Approach   | Group Assignments                                                                |  |  |  |  |
|            | Authentic learning: Library work and Group discussion,                           |  |  |  |  |
|            | Presentation by individual student/Group representative.                         |  |  |  |  |
|            |                                                                                  |  |  |  |  |
| Assess     | Mode of Assessment                                                               |  |  |  |  |
| ment Types | A. Continuous Internal Assessment (CIA)                                          |  |  |  |  |
|            | Internal Tests – Minimum two (Extended answers / Practical)                      |  |  |  |  |
|            | Seminar —                                                                        |  |  |  |  |
|            | <ul> <li>Research Literature review</li> </ul>                                   |  |  |  |  |
|            | <ul> <li>Report writing</li> </ul>                                               |  |  |  |  |
|            | <ul> <li>Presentation</li> </ul>                                                 |  |  |  |  |
|            | <ul> <li>Assignments – Written, Practical, Oral presentation and viva</li> </ul> |  |  |  |  |
|            | Case study/Mini project                                                          |  |  |  |  |
|            | B. Semester End Examination                                                      |  |  |  |  |

#### REFERENCES

- 1. A. K. Ray & K. M. Bhurchandi, Advanced Microprocessors and Peripherals-Architectures, 3e, McGrawHill Education (India)Pvt. Ltd.
- 2. Berry.B.Brey, The Intel Microprocessors 8086/8088 /80186/80188, 80286, 80386,80486 PENTIUM, PENTIUM Pro, PII, PIII & IV Architecture, Programming & Interfacing, Pearson Education..
- 3. Roman Trobec, Boštjan Slivnik Patricio Bulić, Borut Robič, Introduction to Parallel Computing From Algorithms to Programming on State-of-the-Art Platforms, Springer Nature Switzerland AG 2018, ISSN 1863-7310 ISSN 2197-1781 (electronic).
- 4. Yan Solihin, Fundamentals of Parallel Multicore Architecture, CRC Press.



### CO M 21 C 12 MULTICORE MICROPROCESSORS AND PARALLEL PROGRAMMING

- 5. Thomas Rauber, Gudula Runger, Parallel Programming for Multicore and Cluster Systems, Second Edition, Springer-Verlag Berlin Heidelberg, ISBN 978-3-642-37800-3.
- 6. Aaftab Munshi, Benedict R. Gaster, Timothy G. Mattson, James Fung, Dan Ginsburg, OpenCL Programming Guide, Addison-Wesley, Pearson Education Inc.
- 7. David W. Walker, Parallel Computing, Encyclopedia of Physical Science and Technology (Third Edition).

| Approval Date       |  |
|---------------------|--|
|                     |  |
| Version             |  |
|                     |  |
| Approval by         |  |
|                     |  |
| Implementation Date |  |
| -                   |  |



#### CO M 21 C13 ALGORITHMS AND COMPLEXITY

| SchoolName                                  | School of Computer Sciences                                                                                                                                                                                                                                                                                                                  |                  |       |           |      |             |
|---------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------|-----------|------|-------------|
| Programme                                   | M.Sc.                                                                                                                                                                                                                                                                                                                                        |                  |       |           |      |             |
| Course Name                                 | Algorithms and (                                                                                                                                                                                                                                                                                                                             | Complexit        | y     |           |      |             |
| Type of Course                              | Core                                                                                                                                                                                                                                                                                                                                         | Core             |       |           |      |             |
| Course Code                                 | CO M 21 C 13                                                                                                                                                                                                                                                                                                                                 |                  |       |           |      |             |
| Names of Academic<br>Staff & Qualifications | Dr. Anuj Mohamed, MCA,Ph. D.                                                                                                                                                                                                                                                                                                                 |                  |       |           |      |             |
| Course Summary & Justification              | This course provides knowledge of techniques to design efficient algorithms to solve various types of problems and to make evaluative judgments about the algorithms. It also covers techniques to establish the efficiency of the designed algorithms. It also provides concepts of NP-completeness and to evaluate algorithms accordingly. |                  |       |           |      |             |
| Semester                                    |                                                                                                                                                                                                                                                                                                                                              |                  | I     |           |      |             |
| Total<br>StudentLearningTim<br>e (SLT)      | Learning Approach Lecture Tutorial Practical Others Total Learning Hours                                                                                                                                                                                                                                                                     |                  |       |           |      |             |
|                                             | Explicit Teaching Seminar Assignments etc.                                                                                                                                                                                                                                                                                                   | 42               | 28    | 42        | 8    | 120         |
| Pre-requisite                               | Design and A<br>Programming Sk                                                                                                                                                                                                                                                                                                               | Analysis<br>ills | of Al | gorithms, | Data | Structures, |



#### CO M 21 C13 ALGORITHMS AND COMPLEXITY

#### **COURSE OUTCOMES (CO)**

| CO<br>No. | <b>Expected Course Outcome</b>                                                                                                                        | Learning<br>Domains | PSO No.   |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-----------|
| 1         | Analyse a given algorithm and express its time and space complexities in asymptotic notations.                                                        | U, An               | 1,2, 5    |
| 2         | Solve recurrence equations using different methods.                                                                                                   | Ap                  | 2, 3      |
| 3         | Describe various techniques for deriving good lower bounds.                                                                                           | U                   | 2, 5      |
| 4         | Compute the lower bound on the time of an algorithm                                                                                                   | A,E                 | 2,3       |
| 5         | Understand the concept of nondeterministic algorithms                                                                                                 | U                   | 1,2       |
| 6         | Describe computational models for parallel algorithms                                                                                                 | U                   | 1,5       |
| 7         | Implement parallel algorithms for suitable applications                                                                                               | An, C               | 3         |
| 8         | Understand concepts of NP-completeness and evaluate algorithms accordingly                                                                            | U, An, E            | 1,2,8     |
| 9         | Distinguish between problems that can be solved by a polynomial time algorithm and problems for which no polynomial time algorithm is known           | U, An, E            | 1,2       |
| 10        | Apply approximation algorithms to generate feasible solutions for NP-hard problems.                                                                   | U, A                | 2,3       |
| 11        | Design algorithms to solve real-life problems, analyze its complexity and present the approach in an effective way with the aid of appropriate tools. | U,An, C,E           | 1,2,3,5,8 |
| 12        | Acquire knowledge and skills through self-paced and self-directed learning and adapt to changing trends through knowledge/skill updation/reskilling.  | U, An, A,<br>C, E   | 7, 8, 10  |
| *Remen    | nber (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Cred                                                                                 | tte (C), Skill (S)  |           |



#### CO M 21 C13 ALGORITHMS AND COMPLEXITY

# **COURSE CONTENT**Content for Classroom transaction (Sub-units)

| Unit     | Course description                                                                                                                                                                                                                                                                                                  | Hrs | CO No.      |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-------------|
| UNIT I   | Introduction: The Role of Algorithms in Computing, Design and Analysis Fundamentals, Performance Analysis, Mathematical Background for Algorithm Analysis, Recurrences: Substitution Method, Recursion-Tree Method, Master Method.                                                                                  | 16  | 1,2         |
| UNIT II  | Lower Bound Theory: Importance of Lower Bound Theory, Comparison Trees, Adversary Arguments, Lower Bounds through Reductions.                                                                                                                                                                                       | 22  | 3,4         |
| UNIT III | String Matching Algorithms: The Naive String Matching Algorithm, The Rabin-Karp Algorithm, String Matching with Finite Automata, The Knuthmorris-Pratt Algorithm, Longest Common Subsequence.                                                                                                                       | 26  | 5           |
| UNIT IV  | Parallel Algorithms: Sequential vs. Parallel Algorithms; Models: Data Parallel Model, Task Graph Model, Work Pool Model, Master Slave Model, Producer Consumer or Pipeline Model; Hybrid Model; Speedup and Efficiency; Examples of Parallel Algorithms: Parallel Sorting, Parallel Matrix Chain Multiplication.    | 26  | 6,7         |
| UNIT V   | Introduction to NP-Completeness: The class P and NP, NP-Complete, NP-Hard, NP-Completeness and Reducibility; Cook's Theorem.Approximation Algorithms: Absolute Approximations, E-Approximations, Polynomial Time and Fully Polynomial Time Approximation Schemes. Vertex Cover Problem, Traveling-Salesman Problem. | 22  | 8,9,10,11,1 |



#### CO M 21 C13 ALGORITHMS AND COMPLEXITY

| Teachinque and Learning | Classroom Procedure (Mode of transaction)                                                                                                                                                                                                                                     |  |  |  |  |  |
|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Approach                | Direct Instruction: Brain storming lecture, Explicit Teaching, E-learning, Interactive Instruction: Active co-operative learning, Seminar, Group Assignments  Authentic learning: Library work and Group discussion, Presentation by individual student/Group representative. |  |  |  |  |  |
| Assessment<br>Types     | Mode of Assessment                                                                                                                                                                                                                                                            |  |  |  |  |  |
| - <b>J F</b> - 22       | A. Continuous Internal Assessment (CIA)                                                                                                                                                                                                                                       |  |  |  |  |  |
|                         | • Internal Tests – Minimum two (Extended answers / Practical)                                                                                                                                                                                                                 |  |  |  |  |  |
|                         | Seminar —                                                                                                                                                                                                                                                                     |  |  |  |  |  |
|                         | Research Literature review                                                                                                                                                                                                                                                    |  |  |  |  |  |
|                         | <ul> <li>Report writing</li> </ul>                                                                                                                                                                                                                                            |  |  |  |  |  |
|                         | <ul> <li>Presentation</li> </ul>                                                                                                                                                                                                                                              |  |  |  |  |  |
|                         | Assignments – Written, Practical, Oral presentation and viva                                                                                                                                                                                                                  |  |  |  |  |  |
|                         | Case study/Mini project                                                                                                                                                                                                                                                       |  |  |  |  |  |
|                         | B. Semester End Examination                                                                                                                                                                                                                                                   |  |  |  |  |  |

#### REFERENCES

- 1. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein, Introduction to Algorithms, Prentice Hall India, Third Edition.
- 2. G. Brassard, P. Bratley, Fundamentals of Algorithms, PHI.
- 3. Ellis Horowitz, Sartaj Sahni, Sanguthevar Rajeshekharan, Computer Algorithms/C++, Second Edition, Universities Press.
- 4. A. Levitin, Introduction to Design and Analysis of Algorithms, Pearson.
- 5. Basu S.K., Design Methods and Analysis of Algorithms, Prentice Hall, Second Edition.
- 6. A. Bhargava, Grokking Algorithms: An illustrated guide for programmers and other curious people, Manning Publications.
- 7. A. Basheer, M. Zaghlool, FPGA-Based High Performance Parallel Computing, Scholars' Press.
- 8. Richard Neapolitan, Kumars Naimipour, Foundations of Algorithms, Jones and Barlett Publishers, Canada, Fourth Edition.
- 9. Sara Base Allen Van Gelder, Computer Algorithms: Introduction to Design and Analysis, Pearson Education Asia.



#### CO M 21 C13 ALGORITHMS AND COMPLEXITY

10. Prabhakar Gupta, Vineet Agarwal, Manish Varshney, Design and Analysis of Algorithms, Prentice Hall India, Second Edition.

| Approval Date       |  |
|---------------------|--|
| Version             |  |
| Approval by         |  |
| Implementation Date |  |



#### CO M 21 C 14 ARTIFICIAL INTELLIGENCE

| SchoolName                                  | School of Computer Sciences                                                                                                                                                                                                                                                                                                                                                                                                      |                         |              |            |            |                            |
|---------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--------------|------------|------------|----------------------------|
| Programme                                   | M.Sc.                                                                                                                                                                                                                                                                                                                                                                                                                            |                         |              |            |            |                            |
| Course Name                                 | Artificial Intelli                                                                                                                                                                                                                                                                                                                                                                                                               | Artificial Intelligence |              |            |            |                            |
| Type of Course                              | Core                                                                                                                                                                                                                                                                                                                                                                                                                             |                         |              |            |            |                            |
| Course Code                                 | CO M 21 C 14                                                                                                                                                                                                                                                                                                                                                                                                                     |                         |              |            |            |                            |
| Names of Academic<br>Staff & Qualifications | Dr. Ivy Prathap,                                                                                                                                                                                                                                                                                                                                                                                                                 | , Ph.D.                 |              |            |            |                            |
| Course Summary & Justification              | Today, the amount of data that is generated by both humans and machines far outpaces human ability to absorb, interpret, and make complex decisions based on that data. Artificial intelligence forms the basis for all computer learning and is the future of all complex decision making. This course aims to introduce the basic concepts, theories, state-of-the-art techniques and applications of artificial intelligence. |                         |              |            |            |                            |
| Semester                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |              |            |            |                            |
| Total<br>StudentLearningTim<br>e (SLT)      | Learning<br>Approach                                                                                                                                                                                                                                                                                                                                                                                                             | Lecture                 | Tutoria<br>1 | Practica 1 | Other<br>s | Total<br>Learning<br>Hours |
|                                             | Explicit Teaching Seminar, Assignments etc.                                                                                                                                                                                                                                                                                                                                                                                      | 42                      | 28           | -          | 50         | 120                        |
| Pre-requisite                               | Basics of Data S                                                                                                                                                                                                                                                                                                                                                                                                                 | Structures              | and Algori   | ithms      | I          | I                          |



#### CO M 21 C 14 ARTIFICIAL INTELLIGENCE

#### **COURSE OUTCOMES (CO)**

| CO<br>No. | Expected Course Outcome                                                                                                                              | Learning<br>Domains | PSO No. |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|---------|
| 1         | Understand fundamentals of Artificial Intelligence and expert systems                                                                                | U                   | 1,2,10  |
| 2         | Elucidate state space and searching strategies                                                                                                       | Е                   | 2,10    |
| 3         | Analyze various types of standard search algorithms                                                                                                  | An                  | 3,10    |
| 4         | Illustrate advanced search techniques and algorithms like minmax for game playing.                                                                   | A                   | 3,9,10  |
| 5         | Examine Knowledge representation and predicate logic                                                                                                 | A                   | 1,10    |
| 6         | Investigate the role of agents and how it is related to<br>environment and the way of evaluating it and how agents can<br>act by establishing goals. | Е                   | 2,10    |
| 7         | Apply the machine learning concepts in real life problems.                                                                                           | A                   | 1,9,10  |

# COURSE CONTENT Content for Classroom transaction (Sub-units)

| Unit    | Course description                                                                                                                                                                                                                                                                                                                                                                                                           | Hrs | CO No. |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------|
| UNIT I  | Introduction to Artificial Intelligence: Definition of AI; Future of AI; Brief Discussion of Major Topics (Expert System, Natural Language Processing, Speech and Pattern Recognition etc.) of AI. Problem Definition as a State Space Search, Production System, Control Strategies, Problem Characteristics.                                                                                                               | 6   | 1,2    |
| UNIT II | Types of search algorithms: Formal vs. Informal search: Breadth First Search, Depth First Search, iterative deepening, uniform cost search, Hill climbing and its Variations, simulated annealing, genetic algorithm search; Heuristics Search Techniques: Best First Search, A* algorithm, AO* algorithm, Min-max & game trees, refining minmax, Alpha — Beta pruning, Constraint Satisfaction Problem, Means-End Analysis. | 20  | 3      |



#### CO M 21 C 14 ARTIFICIAL INTELLIGENCE

| UNIT III | Game playing - Knowledge representation,<br>Knowledge representation using Predicate<br>logic, Introduction to predicate calculus,<br>Resolution, Use of predicate calculus,<br>Knowledge representation using other logic-<br>Structured representation of knowledge. | 16 | 4,5 |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----|
| UNIT IV  | Architecture for Intelligent Agents – Agent communication – Negotiation and Bargaining – Argumentation among Agents – Trust and Reputation in Multi-agent systems.                                                                                                     | 14 | 6   |
| UNIT V   | AI applications – Language Models – Information Retrieval- Information Extraction – Natural Language Processing – Machine Translation – Speech Recognition – Robot – Hardware –Perception – Planning – Moving.                                                         | 14 | 7   |

| Teaching and         | Classroom Procedure (Mode of transaction)                                                                                                                                                                                            |  |  |  |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Learning<br>Approach | Direct Instruction: Brain storming lecture, Explicit Teaching, E-learning, Interactive Instruction: Active co-operative learning, Seminar, Group Assignments  Authentic learning: Library work and Group discussion, Presentation by |  |  |  |
|                      | individual student/Group representative.                                                                                                                                                                                             |  |  |  |
| Assessment           | Mode of Assessment                                                                                                                                                                                                                   |  |  |  |
| Types                | A. Continuous Internal Assessment (CIA)                                                                                                                                                                                              |  |  |  |
|                      | • Internal Tests – Minimum two (Extended answers)                                                                                                                                                                                    |  |  |  |
|                      | • Seminar –                                                                                                                                                                                                                          |  |  |  |
|                      | Research Literature review                                                                                                                                                                                                           |  |  |  |
|                      | <ul> <li>Report writing</li> </ul>                                                                                                                                                                                                   |  |  |  |
|                      | <ul> <li>Presentation</li> </ul>                                                                                                                                                                                                     |  |  |  |
|                      | Assignments – Written, Oral presentation and viva                                                                                                                                                                                    |  |  |  |



#### CO M 21 C 14 ARTIFICIAL INTELLIGENCE

| Case study                  |
|-----------------------------|
| B. Semester End Examination |

#### **REFERENCES**

- 1. S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach, 3rd edition, Pearson Education.
- 2. Elaine Rich and Kelvin Knight, Artificial Intelligence, 3rd edition, Tata McGraw Hill.
- 3. M. Tim Jones, Artificial Intelligence: A Systems Approach (Computer Science), Jones and Bartlett Publishers, First Edition.
- 4. Nils J. Nilsson, Artificial Intelligence: A new Synthesis, Harcourt Asia Pvt. Ltd.
- 5. George F. Luger, Artificial Intelligence-Structures and Strategies For Complex Problem Solving, Pearson Education.

| Approval Date       |  |
|---------------------|--|
| Version             |  |
| Approval by         |  |
| Implementation Date |  |



#### CO M 21 C 16 CASE STUDY USING PYTHON-LAB

| School Name                                    | School of Computer Sciences                                                                                                                                                                                                                                                                                                                                                                           |            |              |         |            |                            |
|------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------------|---------|------------|----------------------------|
| Programme                                      | M.Sc.                                                                                                                                                                                                                                                                                                                                                                                                 |            |              |         |            |                            |
| Course Name                                    | Case Study using                                                                                                                                                                                                                                                                                                                                                                                      | Python-La  | ıb           |         |            |                            |
| Type of Course                                 | Core                                                                                                                                                                                                                                                                                                                                                                                                  |            |              |         |            |                            |
| Course Code                                    | SKSMPC16                                                                                                                                                                                                                                                                                                                                                                                              | SKSMPC16   |              |         |            |                            |
| Names of<br>Academic Staff<br>& Qualifications | Ms. Jissy Liz Jose, M.Tech.                                                                                                                                                                                                                                                                                                                                                                           |            |              |         |            |                            |
| Course<br>Summary &<br>Justification           | The course provides an insight into the fundamentals of Python programming. It covers programming environment, important instructions, data representations, database connectivity and object-oriented design of Python. This course lays the foundation to develop Web applications, Machine Learning, Artificial Intelligence-based applications, Data Science and Data Visualization applications. |            |              |         |            |                            |
| Semester                                       | I                                                                                                                                                                                                                                                                                                                                                                                                     |            |              |         |            |                            |
| Total Student<br>Learning Time<br>(SLT)        | Learning<br>Approach                                                                                                                                                                                                                                                                                                                                                                                  | Lecture    | Tutoria<br>1 | Pract   | Others     | Total<br>Learning<br>Hours |
|                                                | Explicit Teaching Assignments, Viva, Record Preparation etc.                                                                                                                                                                                                                                                                                                                                          | -          | 14           | 84      | 22         | 120                        |
| Pre-requisite                                  | Basic knowledge                                                                                                                                                                                                                                                                                                                                                                                       | of any pro | gramming     | languag | e concepts |                            |



#### CO M 21 C 16 CASE STUDY USING PYTHON-LAB

#### **COURSE OUTCOMES (CO)**

| CO  | <b>Expected Course Outcome</b>                                                    | Learning       | PSO No.     |  |
|-----|-----------------------------------------------------------------------------------|----------------|-------------|--|
| No. |                                                                                   | <b>Domains</b> |             |  |
| 1   | Write, test and debug Python programs in interactive                              | A              | 1,2,3       |  |
|     | mode and script mode                                                              |                |             |  |
| 2   | Familiarize with variables, keywords, operators,                                  | U              |             |  |
|     | expressions, input-output, data types and functions of                            |                | 1,2,3       |  |
|     | python.                                                                           |                |             |  |
| 3   | Apply built in functions, modules and packages to                                 | A              | 1,2,3,4,7   |  |
|     | solve real world problems.                                                        |                | 10          |  |
| 4   | Illustrate the uses of assignment statements,                                     | A              | 1,2,3,4     |  |
|     | conditional and iterative statements in Python                                    |                |             |  |
| 5   | Choose an appropriate Data Structure like Lists,                                  | An             | 1,2,3,4,7,1 |  |
|     | Tuples, Sets and Dictionaries of Python for solving a                             |                | 0           |  |
|     | problem.                                                                          |                |             |  |
| 6   | Discover the capabilities of Python regular expression                            | S              | 1,2,3,4,7,1 |  |
|     | for data verification.                                                            |                | 0           |  |
| 7   | Interpret the concepts of Object-oriented programming                             | Е              | 1,2,3,4,7,1 |  |
|     | in Python using polymorphism and inheritance.                                     |                | 0           |  |
| 8   | Develop database programs and establish database                                  | С              | 1,2,3,4,    |  |
|     | connectivity using MySQL                                                          |                | 7,10        |  |
|     | *Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), |                |             |  |

### Skill (S)

#### **COURSE CONTENT**

#### **Content for Classroom transaction (Sub-units)**

| Unit    | Course description                                                                                                                                                 | Hrs | CO No. |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------|
|         |                                                                                                                                                                    |     |        |
| UNIT I  | Python interpreter, invoking the interpreter, arguments passing, executable python scripts, python data types, collections, input output data, built in functions. | 18  | 1      |
| UNIT II | Operators (unary, arithmetic, etc.) Data types, variables, expressions, and statements Assignment statements -Control Structures: loops and decision.              | 18  | 2,4    |



#### CO M 21 C 16 CASE STUDY USING PYTHON-LAB

| UNIT III | Modularization and Classes - Standard modules Packages Defining Classes Defining functions Functions and arguments - Exceptions and data structures Data Structures (array, List, Dictionary) Error                 | 22 | 3,5 |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----|
| UNIT IV  | processing Exception Raising and Handling.  Regular expression in python, searching, matching, splitting, grouping string programs- Object Oriented Programming Object Oriented Design Inheritance and Polymorphism | 20 | 6,7 |
| UNIT V   | Database programs in python-Installing MYSQL, connectivity using MYSQL, create database instance and using with python, MSQLdb module with python.                                                                  | 20 | 8   |

| <b>Teaching and</b> | Classroom Procedure (Mode of transaction)                                  |  |  |  |
|---------------------|----------------------------------------------------------------------------|--|--|--|
| Learning            |                                                                            |  |  |  |
| Approach            | Explicit Teaching, E-learning, Active co-operative learning, Inquiry based |  |  |  |
|                     | instruction, Authentic learning, Library work and Group discussions        |  |  |  |
| Assessment          | Mode of Assessment                                                         |  |  |  |
| Types               |                                                                            |  |  |  |
|                     | A. Continuous Internal Assessment (CIA)                                    |  |  |  |
|                     | <ul> <li>Technical skills evaluation - Correctness of programs</li> </ul>  |  |  |  |
|                     | <ul> <li>Internal Tests – Minimum two (Practical)</li> </ul>               |  |  |  |
|                     | <ul> <li>Assignments -Lab Records, Practical and Viva</li> </ul>           |  |  |  |
|                     | Case study                                                                 |  |  |  |
|                     | •                                                                          |  |  |  |
|                     | B. Semester End Examination                                                |  |  |  |

#### **REFERENCES**

- 1. Starting out with python by Tony Gadis ,2nd edition Pearson Publications
- 2. Python: From Novice to Professional by Magnus Lie Hetland-Apress
- 3. Python 2.6 Bible –Dave Breuck and Stephen Tanner-Hungry minds Ins.
- 4. Beginning Python –Peter Norton, Alex Samuel, David Aitel-wrox publications
- 5. Python Essential Reference-David M Beazley second Edition



#### CO M 21 C 16 CASE STUDY USING PYTHON-LAB

| Approval Date       |  |
|---------------------|--|
| Version             |  |
| Approval by         |  |
| Implementation Date |  |

#### MAHATMA GANDHI UNIVERSITY



School of Computer Sciences

#### CO M 21 E 11 CYBER SECURITY AND CYBER LAWS

#### **ELECTIVES**

| Name of School       | School of Cor                                                  | mputer Sc  | iences      |              |               |              |
|----------------------|----------------------------------------------------------------|------------|-------------|--------------|---------------|--------------|
| Programme            | M. Sc                                                          |            |             |              |               |              |
| Name of Course       | CYBER SEC                                                      | CURITY A   | AND CYB     | ER LAWS      |               |              |
| Type of Course       | Elective                                                       |            |             |              |               |              |
| <b>Course Code</b>   | CO M 21 E 1                                                    | 1          |             |              |               |              |
| Names of             | Dr. Abdul Jab                                                  | bar P, MI  | Phil, PhD   |              |               |              |
| Academic Staff       |                                                                |            |             |              |               |              |
| &                    | Ph. D                                                          | Ph. D      |             |              |               |              |
| Qualifications       |                                                                |            |             |              |               |              |
| Course               | The course is                                                  | focused o  | n the conc  | ept of cyber | security and  | l cyber law. |
| Summary &            | Areas include                                                  |            | _           | _            |               | •            |
| Justification        | force and dict                                                 | •          |             | -            | •             |              |
|                      | and protection                                                 |            |             | ~ .          | •             |              |
|                      | pointing out fi                                                |            |             |              |               |              |
|                      | is capable of u                                                | using cybe | er space in | the industry | for defending | ng attacks.  |
| Semester             | I                                                              |            |             |              |               |              |
| <b>Total Student</b> | Learning                                                       |            |             |              |               |              |
| Learning Time        | Approach                                                       | Lectur     | Tutoria     | Practical    | Others        | Total        |
| (SLT)                |                                                                | e          | 1           |              |               | Learnin      |
|                      |                                                                |            |             |              |               | g Hours      |
|                      | Explicit                                                       | 42         | 14          | 28           |               |              |
|                      | Teaching                                                       |            |             |              |               |              |
|                      |                                                                |            |             |              |               | 120          |
|                      | Seminar,                                                       |            |             |              | 36            |              |
|                      | Assignment                                                     |            |             |              |               |              |
|                      | s etc.                                                         |            |             |              |               |              |
| Pre-requisite        | The learner must have gained the fundamental concepts of cyber |            |             |              |               |              |
|                      | security and information interchange.                          |            |             |              |               |              |



#### CO M 21 E 11 CYBER SECURITY AND CYBER LAWS

#### **COURSE OUTCOMES (CO)**

| CO<br>No.                                                                                   | Expected Course Outcome                                                                                      | Learning<br>Domains | PSO No.   |  |
|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|---------------------|-----------|--|
| 1                                                                                           | Understand the significance of cyber security, cryptography and cyber laws.                                  | R, U                | 1,2,10    |  |
| 2                                                                                           | Recognize and understand the characteristics of attackers technique and motivations.                         | A,An,S,E            | 3,4,5     |  |
| 3                                                                                           | Identify and compare various cyber attacks to protect information.                                           | C,An, S, E          | 3,5,7,8   |  |
| 4                                                                                           | Analyse and evaluate various cyber law based infamous cyber crime(civil and criminal cybersecurity offenses) | U,A,An,E            | 2,8,9,10  |  |
| 5                                                                                           | Develop and update future development in cyber security law, cyber privacy and data protection law.          | A,C,An,E            | 1,3,4,8,9 |  |
| *Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S) |                                                                                                              |                     |           |  |

### COURSE CONTENT

#### **Content for Classroom transaction (Sub-units)**

| Unit     | Course description                                                                                                                                                                                                                                                                                                                   | Hrs | CO No. |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------|
|          |                                                                                                                                                                                                                                                                                                                                      |     |        |
| UNIT I   | Introduction to Cyber Security; Information security, Fundamentals, Network and security concept; Information assurance fundamentals, Basic cryptography, Symmetric encryption, Public key encryption, firewalls and virtualization.                                                                                                 | 15  | 1      |
| UNIT II  | Attacker technique and motivations; Using Proxies, Tunneling technique, Fraud technique, Rogue antivirus, Click fraud, Threat infrastructure, Exploitation; Shell code, Integer overflow, Stack based buffer overflows, String vulnerabilities, SQL injection, Malicious PDF file, Race condition, Web exploit tools, DoS condition. | 20  | 2      |
| UNIT III | Brute force and dictionary attacks, Cross site scripting, Social engineering, WarXing, Malicious code; self replicating malicious code, Evading detection and elevating privileges, Stealing information and exploitation, Memory                                                                                                    | 15  | 3      |



#### CO M 21 E 11 CYBER SECURITY AND CYBER LAWS

|         | forensics, Honeypots, Malicious code naming,<br>Intrusion detection system                                                                                                                                                                                                                                |    |   |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|---|
| UNIT IV | Introduction to Cybersecurity law, Infamous cybercrimes, Cybercrime taxonomy, Civil vs criminal cybersecurity offenses, Basic element of criminal law, Branches of law, Tort law, Cyber law enforcement, Cybersecurity law jurisdiction, Cybercrime and cyber tort punishment.                            | 20 | 4 |
| UNIT V  | Cyber privacy and data protection law;<br>Common law of privacy, Privacy laws, Data<br>breach laws, Data breach litigation, Privacy<br>notice law, Personal liability, Data disposal law,<br>Cryptography and digital forensics law, Social<br>media privacy, Future development in<br>cybersecurity law. | 14 | 5 |

| Classroom  | Mode of transaction                                                                                              |  |  |  |  |  |  |
|------------|------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Procedure  | Direct Instruction: Brain storming lecture, Practical Session, Explicit Teaching, E-learning,                    |  |  |  |  |  |  |
|            | Interactive Instruction:, Active co-operative learning, Seminar, Group Assignments                               |  |  |  |  |  |  |
|            | Authentic learning, Library work and Group discussion, Presentation by individual student/ Group representative. |  |  |  |  |  |  |
| Assessment | Mode of Assessment                                                                                               |  |  |  |  |  |  |
| Types      | A. Continuous Internal Assessment (CIA)                                                                          |  |  |  |  |  |  |
|            | • Internal Tests – Minimum two (Extended answers / Practical)                                                    |  |  |  |  |  |  |
|            | • Seminar –                                                                                                      |  |  |  |  |  |  |
|            | Research Literature review, Report writing, Presentation                                                         |  |  |  |  |  |  |
|            | Assignments – Written, Practical, Oral presentation and viva                                                     |  |  |  |  |  |  |
|            | Case study/Mini project                                                                                          |  |  |  |  |  |  |
|            | B. Semester End Examination                                                                                      |  |  |  |  |  |  |



#### CO M 21 E 11 CYBER SECURITY AND CYBER LAWS

#### **REFERENCES**

- 1. James Graham, Rick Howard, Ryan Olson, Cyber Security Essentials, CRC Press, 2016
- 2. Mayank Bhushan, Rajkumar Singh Rathore, Aatif Jamshed, Fundamentals of Cyber Security, BPB Publications, 2017.
- 3. Tari Schreider, Cybersecurity Law, Standards and Regulations, 2nd Edition, Rothstein Publishing, 2020.
- 4. Information Resources Management Association, Cyber Law, Privacy, and Security Concepts, Methodologies, Tools, and Applications, IGI Global, 2019.
- 5. Jeff Kosseff, Cybersecurity Law, Wiley, 2019.

| Approval Date       |  |
|---------------------|--|
|                     |  |
| Version             |  |
|                     |  |
| Approval by         |  |
| Implementation Date |  |



#### CO M 21 E12 ADVANCED DATA STRUCTURES

| Name of School                                 | School of Con                                                                                                                                                                                                                                                                                                                                                                                                                         | mputer Sc                       | iences       |           |        |                             |
|------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|--------------|-----------|--------|-----------------------------|
| Programme                                      | M. Sc                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                 |              |           |        |                             |
| Name of Course                                 | Advanced Da                                                                                                                                                                                                                                                                                                                                                                                                                           | ta Structu                      | res          |           |        |                             |
| Type of Course                                 | Elective                                                                                                                                                                                                                                                                                                                                                                                                                              |                                 |              |           |        |                             |
| Course Code                                    | CO M 21 E 1                                                                                                                                                                                                                                                                                                                                                                                                                           | 2                               |              |           |        |                             |
| Names of<br>Academic Staff<br>, Qualifications | Dr. Abdul Jab                                                                                                                                                                                                                                                                                                                                                                                                                         | Dr. Abdul Jabbar P, M Phil, PhD |              |           |        |                             |
| Course<br>Summary ,<br>Justification           | The course covers the advanced concept of the design, analysis, and implementation of data structures and algorithms to solve problems using any programming language. Areas include elementary data structures, (including arrays, stacks, queues, and lists), advanced data structures (including trees, heap and graphs), the algorithms used to manipulate these structures, and their application to solving practical problems. |                                 |              |           |        |                             |
| Semester                                       | I                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                 |              |           |        |                             |
| Total Student<br>Learning Time<br>(SLT)        | Learning<br>Approach                                                                                                                                                                                                                                                                                                                                                                                                                  | Lectur<br>e                     | Tutoria<br>1 | Practical | Others | Total<br>Learnin<br>g Hours |
|                                                | Explicit Teaching Seminar, Assignment s etc.                                                                                                                                                                                                                                                                                                                                                                                          | 42                              | 14           | 28        | 36     | 120                         |
| Pre-requisite                                  | The learner must have gained the fundamental concepts of Data Structure at bachelor level.                                                                                                                                                                                                                                                                                                                                            |                                 |              |           |        |                             |



#### CO M 21 E12 ADVANCED DATA STRUCTURES

#### **COURSE OUTCOMES (CO)**

| CO       | <b>Expected Course Outcome</b>                                                    | Learning  | PSO No.     |  |  |
|----------|-----------------------------------------------------------------------------------|-----------|-------------|--|--|
| No.      |                                                                                   | Domains   |             |  |  |
| 1        | Define and develop data structure concept                                         | A,An,S,E  | 3,4,6       |  |  |
| 2        | Construct and categorize various list such as linkedlists,                        | C,A,S ,E  | 4,5,8       |  |  |
|          | Shared and Recursive Lists; Heterogeneous Lists –                                 |           |             |  |  |
|          | Deterministic Skip Lists                                                          |           |             |  |  |
| 3        | Expertise in Hashing technique using construct and                                | U,A,An,C  | 3,6,7,9     |  |  |
|          | demonstrate Algorithms                                                            |           |             |  |  |
| 4        | Identify a problem and analyze it in terms of its                                 | A,An,S,E  | 3,4,6       |  |  |
|          | significant parts and the information needed to solve                             |           |             |  |  |
|          | using Search Structures.                                                          |           |             |  |  |
| 5        | Manage and develop Heap Structures in problem                                     | A,C,An,E  | 4,8,9,10    |  |  |
|          | solving aspects.                                                                  |           |             |  |  |
| 6        | Formulate and evaluate possible Algorithms of the                                 | S,C,E     | 1,3,7,9     |  |  |
|          | problems, and select and measure the chosen                                       |           |             |  |  |
|          | Algorithms                                                                        |           |             |  |  |
| 7        | Demonstrate the ability to analyze, design, apply and                             | An,U,R,,A | 5,6,7,8,9,1 |  |  |
|          | use data structures and algorithms to solve engineering                           |           | 0           |  |  |
|          | problems and evaluate their solutions.                                            |           |             |  |  |
| *Reme    | *Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), |           |             |  |  |
| Skill (S | 5)                                                                                |           |             |  |  |

# COURSE CONTENT Content for Classroom transaction (Sub-units)

| Unit    | Course description                                                                                                                                                                                                             | Hrs | CO No. |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------|
| UNIT I  | Introduction to Data Structure: Overview,<br>Types and Characteristics of Data Structure,<br>Arrays, Stacks, Queues, Linked lists, Trees,<br>Graphs.                                                                           | 15  | 1      |
| UNIT II | Generalized linkedlists, Representation,<br>Recursive Algorithms, Reference Counts—<br>Shared and Recursive Lists; Heterogeneous<br>Lists — Deterministic Skip Lists. Hashing:-<br>Separate Chaining; Open Addressing — Linear | 20  | 2,3    |



#### CO M 21 E12 ADVANCED DATA STRUCTURES

| UNIT III | Probing – Quadratic Probing; Double Hashing – Rehashing – Extendible Hashing.  Search Structures, 2-3 Trees – 2-3-4 Trees Rd-Black Trees – B-Trees - Splay Trees – Digital Search Trees Tries – Differential Files – AA-Trees – Treaps – K Trees K-d Trees – Tries. | 15 | 4   |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----|
| UNIT IV  | Heap Structures, Min-Max Heaps – D-heaps – Leftist Heaps – Binomial Heaps – Fibonacci Heaps – Binary Heaps – Skew Heaps – Pairing Heaps – Applications.                                                                                                             | 20 | 5   |
| UNIT V   | Abstract Data Type (ADT) – algorithms - concepts - definition - objectives of algorithms quality of an algorithm - space complexity and time complexity of an algorithm, Sorting, Searching and Application.                                                        | 14 | 6,7 |

| Classroom  | Mode of transaction                                                     |  |  |  |  |  |
|------------|-------------------------------------------------------------------------|--|--|--|--|--|
| Procedure  | Direct Instruction: Brain storming lecture, Practical Session, Explicit |  |  |  |  |  |
|            | Teaching, E-learning,                                                   |  |  |  |  |  |
|            | Interactive Instruction:, Active co-operative learning, Seminar, Group  |  |  |  |  |  |
|            | Assignments                                                             |  |  |  |  |  |
|            | Authentic learning, Library work and Group discussion, Presentation by  |  |  |  |  |  |
|            | individual student/ Group representative.                               |  |  |  |  |  |
| Assessment | Mode of Assessment                                                      |  |  |  |  |  |
| Types      | A. Continuous Internal Assessment (CIA)                                 |  |  |  |  |  |
|            | <b>6.</b> Internal Tests – Minimum two (Extended answers / Practical)   |  |  |  |  |  |
|            | 7. Seminar –                                                            |  |  |  |  |  |
|            | <ul> <li>Research Literature review</li> </ul>                          |  |  |  |  |  |
|            | <ul> <li>Report writing</li> </ul>                                      |  |  |  |  |  |
|            | <ul> <li>Presentation</li> </ul>                                        |  |  |  |  |  |
|            | 8. Assignments – Written, Practical, Oral presentation and viva         |  |  |  |  |  |
|            | 9. Case study/Mini project                                              |  |  |  |  |  |
|            | B. Semester End Examination                                             |  |  |  |  |  |



#### CO M 21 E12 ADVANCED DATA STRUCTURES

- 1. Ellis Horowitz, Sartaj Sahni, Dinesh Mehta, Fundamentals of Data Structures in C++, 2<sup>nd</sup> Edition, Universities Press.
- 2. Mark Allen Weiss, Data Structures and Algorithm Analysis in C++, Second Edition, Pearson Education Asia.
- 3. Debashish Samanta, Classic Data Structures, PHI Second Edition.
- 4. Kutti, Padhye, Data Structures in C++, PHI, First Edition.
- 5. Alfred V. Aho, John E. Hopcroft and Jeffrey D. Ullman, Data Structures and Algorithms, Addison-Wesley.
- 6. Ellis Horowitz, Sartaj Sahni and Susan Anderson-Freed, Fundamentals of Data Structures in C, Silicon Press.
- 7. Richard F. Gilberg and Behrouz A. Forouzan, Data Structures: A Pseudocode Approach With C, Cengage Learning.
- 8. Aaron M. Tenenbaum, Yedidyah Langsam and Moshe J. Augenstein, Data Structure using C, Prentice- Hall.
- 9. Robert Kruse, Tondo C L and Bruce Leung, Data Structures & Program Design in C, Pearson India, 2<sup>nd</sup> Edition.
- 10. Thomas H Cormen, Charles E Leiserson, and Ronald L Rivest, Introduction to Algorithms, 3rd Edition, Prentice Hall of India Private Limited.
- 11. Jean-Paul Tremblay, Paul G. Sorenson, P. G. Sorenson, Introduction to Data Structures with Applications, Mcgraw-Hill College.

| Approval Date       |  |
|---------------------|--|
| Version             |  |
| Approval by         |  |
| Implementation Date |  |



#### CO M 21 E13 3D GRAPHICS

| SchoolName                                  | School of Com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | School of Computer Sciences |            |             |           |       |  |
|---------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|------------|-------------|-----------|-------|--|
| Programme                                   | M.Sc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | M.Sc.                       |            |             |           |       |  |
| Course Name                                 | 3D Graphics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                             |            |             |           |       |  |
| Type of Course                              | Elective                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                             |            |             |           |       |  |
| Course Code                                 | CO M 21 E 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |            |             |           |       |  |
| Names of Academic<br>Staff & Qualifications | Prof. Dr. Bindu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Prof. Dr. Bindu V R, Ph.D   |            |             |           |       |  |
| Course Summary & Justification  Semester    | Computer graphics is one of the vital aspects of any computing system. Its primary role is to render the digital content (0's and 1's) in a human-comprehensible form on the computer screen. The objective of this course is to familiarize students with fundamental algorithms and data structures that are used in today's interactive graphics systems as well as programming and architecture of high-resolution graphics computers. The students get hands on experience on graphic programming APIs such as OpenGL. |                             |            |             |           |       |  |
| Total                                       | Landina                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | T4                          | T          | Duration    | Other     | Takal |  |
| StudentLearningTim<br>e (SLT)               | Learning<br>ApproachLectureTutoriaPractica<br>1sTotal<br>Learnin<br>g<br>Hours                                                                                                                                                                                                                                                                                                                                                                                                                                              |                             |            |             |           |       |  |
|                                             | Explicit Teaching Seminar, Assignments etc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 42                          | 14         | 28          | 36        | 120   |  |
| Pre-requisite                               | Basics of Geon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | netry, linea                | r algebra, | vectors and | d matrice | es    |  |



#### CO M 21 E13 3D GRAPHICS

#### **COURSE OUTCOMES (CO)**

| CO  | <b>Expected Course Outcome</b>                                                              | Learning          | PSO No.    |  |  |
|-----|---------------------------------------------------------------------------------------------|-------------------|------------|--|--|
| No. |                                                                                             | Domains           |            |  |  |
| 1   | Understand fundamentals of 3D graphics and display methods                                  | U                 | 1,2        |  |  |
| 2   | Elucidate 3D Geometric transformations                                                      | U, An, E          | 1,2,10     |  |  |
| 3   | Analyze Representations of 3D Objects                                                       | An                | 1,3,5,10   |  |  |
| 4   | Illustrate representation of solids                                                         | U, A, An,<br>E    | 3,9,10     |  |  |
| 5   | Compare and Analyse Visible surface detection methods.                                      | U, A, An          | 1,2,3,5,10 |  |  |
| 6   | Investigate types of projections and projection matrices                                    | U, An, E          | 1,2,3,10   |  |  |
| 7   | Create graphic programs using OpenGL                                                        | U, An, A,<br>C, E | 1,2,3,5,10 |  |  |
|     | *Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S) |                   |            |  |  |

# COURSE CONTENT Content for Classroom transaction (Sub-units)

| Unit     | Course description                                                                                                                                                                                                                                                                             | Hrs | CO No. |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------|
|          |                                                                                                                                                                                                                                                                                                |     |        |
| UNIT I   | Introduction - Three dimensional Concepts, Display Methods                                                                                                                                                                                                                                     | 8   | 1      |
| UNIT II  | 3D Geometric transformations- Translation,<br>Scaling, Rotation, Reflection, Shear, Composite<br>Transformations, Modeling and Co-ordinate<br>transformations                                                                                                                                  | 20  | 2      |
| UNIT III | Representations of 3D Objects - Polygon surfaces, Representation of curves and surfaces, Representing solids- Sweep representations, Boundary representations, Spatial-partitioning representations, Constructive solid geometry. Visible surface detection methods. Shading and Illumination. | 24  | 3,4,5  |
| UNIT IV  | Viewing-Projections, ProjectionMatrices.                                                                                                                                                                                                                                                       | 16  | 6      |



#### CO M 21 E13 3D GRAPHICS

|        | Discrete Techniques in OpenGL - Texture                                  |    | 7 |
|--------|--------------------------------------------------------------------------|----|---|
| UNIT V | mapping, Bit and Pixel operations,<br>Compositing, Sampling and Aliasing | 16 |   |
|        | Techniques.                                                              |    |   |

| Teaching                | Classroom Procedure (Mode of transaction)                                                                                                                   |  |  |  |  |
|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| andLearningApproac<br>h | Direct Instruction: Brain storming lecture, Explicit Teaching, Elearning, Interactive Instruction: Active co-operative learning, Seminar, Group Assignments |  |  |  |  |
|                         | Authentic learning:Library work and Group discussion, Presentation by individual student/Group representative.                                              |  |  |  |  |
| Assessment Types        | Mode of Assessment                                                                                                                                          |  |  |  |  |
|                         | A. Continuous Internal Assessment (CIA)                                                                                                                     |  |  |  |  |
|                         | Internal Tests – Minimum two (Extended answers)                                                                                                             |  |  |  |  |
|                         | • Seminar –                                                                                                                                                 |  |  |  |  |
|                         | <ul> <li>Research Literature review</li> </ul>                                                                                                              |  |  |  |  |
|                         | <ul> <li>Report writing</li> </ul>                                                                                                                          |  |  |  |  |
|                         | <ul> <li>Presentation</li> </ul>                                                                                                                            |  |  |  |  |
|                         | Assignments – Written, Oral presentation and viva                                                                                                           |  |  |  |  |
|                         | • Case study                                                                                                                                                |  |  |  |  |
|                         | B. Semester End Examination                                                                                                                                 |  |  |  |  |



#### CO M 21 E13 3D GRAPHICS

- 1. Hearn D., Baker M, P., Computer Graphics, Prentice-Hall of India.
- **2.** Foley J,D.,Andries Van Dam, Computer Graphics Principles and Practice, Addison-Wesley.
- **3.** Angel, Edward. Interactive Computer Graphics- A Top-down Approach with OpenGL, Addison-Wesley.
- **4.** F. S. Hill, Computer Graphics Using OpenGL, Pearson Education.
- **5.** Alan Watt, 3D Computer graphics, Pearson Education.

| Approval Date       |  |
|---------------------|--|
| Version             |  |
| Approval by         |  |
| Implementation Date |  |



#### CO M 21 C 21 MACHINE LEARNING

#### SECOND SEMESTER

| School Name                                 | School of Con                                                                                                                                                                                                                                                                                                                                                                                                                                | nputer Sc   | iences       |            |            |                            |
|---------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------|------------|------------|----------------------------|
| Programme                                   | M. Sc.                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |              |            |            |                            |
| Course Name                                 | Machine Lear                                                                                                                                                                                                                                                                                                                                                                                                                                 | ning        |              |            |            |                            |
| Type of Course                              | Core                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |              |            |            |                            |
| Course Code                                 | CO M 21 C 21                                                                                                                                                                                                                                                                                                                                                                                                                                 | [           |              |            |            |                            |
| Names of Academic<br>Staff & Qualifications | Prof. (Dr.) Anuj Mohamed, Ph. D.                                                                                                                                                                                                                                                                                                                                                                                                             |             |              |            |            |                            |
| Course Summary & Justification              | This course provides knowledge of techniques to design efficient machine learning algorithms to solve real-world problems. The students will learn the basic mathematical/statistical concepts required to understand and develop machine learning algorithms. The students will also get acquainted with the design and implementation of efficient algorithms to solve various real-life problems by applying the neural network approach. |             |              |            |            |                            |
| Semester                                    | I                                                                                                                                                                                                                                                                                                                                                                                                                                            | 170         |              | 11         |            |                            |
| Total<br>StudentLearningTim<br>e (SLT)      | Learning<br>Approach                                                                                                                                                                                                                                                                                                                                                                                                                         | Lectur<br>e | Tutoria<br>1 | Practica 1 | Other<br>s | Total<br>Learning<br>Hours |
|                                             | Explicit Teaching Seminar, Assignments, etc.                                                                                                                                                                                                                                                                                                                                                                                                 | 42          | 14           | 28         | 36         | 120                        |
| Pre-requisite                               | Mathematical I                                                                                                                                                                                                                                                                                                                                                                                                                               | Foundation  | ns, Prograi  | mming Skil | lls        | l                          |



#### CO M 21 C 21 MACHINE LEARNING

#### **COURSE OUTCOMES (CO)**

| CO<br>No. | <b>Expected Course Outcome</b>                                                                                                                                                    | Learning<br>Domains | PSO No.   |  |  |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-----------|--|--|
| 1         | Understand the concept of machine learning and its applications.                                                                                                                  | U, A                | 1,3       |  |  |
| 2         | Understand and apply mathematical/statistical concepts required to develop efficient machine learning algorithms.                                                                 | U, A, An            | 2, 3,4    |  |  |
| 3         | Understand and apply the Bayesian method                                                                                                                                          | U, A, An            | 1, 2, 3   |  |  |
| 4         | Understand the concept and various techniques for prediction                                                                                                                      | U                   | 1         |  |  |
| 5         | Understand and apply the concept of linear regression to solve prediction problems                                                                                                | U, An, A,           | 1,2,3,4   |  |  |
| 6         | Understand and apply the concept of the gradient descent approach                                                                                                                 | U, A                | 1,2       |  |  |
| 7         | Understand the concept and various techniques for classification                                                                                                                  | U                   | 1         |  |  |
| 8         | Understand and apply the concept of logistic regression to solve classification problems                                                                                          | U, An, A,           | 1,2,3,4   |  |  |
| 9         | Apply the concept of regularization in linear and logistic regression                                                                                                             | U,An,A,E            | 1,2,3,8   |  |  |
| 10        | Understand the concepts of Artificial Neural Networks,<br>Multilayer Perceptrons and apply the Backpropagation<br>algorithm for training the neural network                       | U,A,An, C           | 1,2,3,5   |  |  |
| 11        | Critically analyze the efficiency of alternative algorithmic solutions for the same problem                                                                                       | U, An, E            | 1,2,8     |  |  |
| 12        | Design and implement efficient algorithms to solve various real-life problems by applying neural network concepts and presenting the approach effectively with appropriate tools. | U, A, An,<br>C,E    | 1,2,3,5,8 |  |  |
| 13        | Acquire knowledge and skills through self-paced and self-directed learning and adapt to changing trends through knowledge/skill updation/reskilling.                              | U, An, A,<br>C, E   | 7, 8, 10  |  |  |
|           | *Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S)                                                                                       |                     |           |  |  |



#### CO M 21 C 21 MACHINE LEARNING

# COURSE CONTENT Content for Classroom transaction (Sub-units)

| Unit     | Course description                                                                                                                                                                                                                                                                                                                                                                           | Hrs | CO No.     |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------------|
| UNIT I   | Introduction: Concept of Machine Learning, Types of Machine Learning, Challenges of Machine Learning, Applications of Machine Learning, Mathematical Foundations for Machine Learning: Linear Algebra, Analytic Geometry, Matrix Decompositions, Vector Calculus, Probability and Distributions, Continuous Optimization, Statistical Learning: Bayesian Method, The Naive Bayes Classifier. | 20  | 1,2,3,13   |
| UNIT II  | Linear Regression: Prediction using Linear Regression, Gradient Descent, Linear Regression with one Variable, Linear Regression with Multiple Variables, Polynomial Regression, Feature Scaling/Selection.                                                                                                                                                                                   | 14  | 4,5,13     |
| UNIT III | Logistic Regression: Classification using Logistic Regression, Logistic Regression vs. Linear Regression, Logistic Regression with one Variable and with Multiple Variables.                                                                                                                                                                                                                 | 14  | 6,7,8,9,13 |
| UNIT IV  | Regularization: Regularization and its Utility: The problem of Overfitting, Application of Regularization in Linear and Logistic Regression, Regularization and Bias/Variance.                                                                                                                                                                                                               | 14  | 11,13      |
| UNIT V   | Neural Networks: Introduction, Model<br>Representation, Gradient Descent vs.<br>Perceptron Training, Stochastic Gradient<br>Descent, Multilayer Perceptrons, Multiclass<br>Representation, Back Propagation Algorithm.                                                                                                                                                                       | 22  | 6,10,12,1  |



#### CO M 21 C 21 MACHINE LEARNING

| Teaching and | Classroom Procedure (Mode of transaction)                                  |  |  |  |  |
|--------------|----------------------------------------------------------------------------|--|--|--|--|
| Learning     | Direct Instruction: Brain storming lecture, Explicit Teaching, E-learning, |  |  |  |  |
| Approach     | Interactive Instruction: Active co-operative learning, Seminar, Group      |  |  |  |  |
|              | Assignments                                                                |  |  |  |  |
|              | Authentic learning: Library work and Group discussion, Presentation by     |  |  |  |  |
|              | individual student/Group representative.                                   |  |  |  |  |
|              |                                                                            |  |  |  |  |
| Assessment   | Mode of Assessment                                                         |  |  |  |  |
| Types        | A. Continuous Internal Assessment (CIA)                                    |  |  |  |  |
|              | Internal Tests – Minimum two (Extended answers / Practical)                |  |  |  |  |
|              | Seminar —                                                                  |  |  |  |  |
|              | <ul> <li>Research Literature review</li> </ul>                             |  |  |  |  |
|              | ■ Report writing                                                           |  |  |  |  |
|              | <ul> <li>Presentation</li> </ul>                                           |  |  |  |  |
|              | Assignments – Written, Practical, Oral presentation and viva               |  |  |  |  |
|              | Case study/Mini project                                                    |  |  |  |  |
|              | B. Semester End Examination                                                |  |  |  |  |

- 1. Ethem Alpaydin, "Introduction to Machine Learning", 4th Edition, The MIT Press.
- 2. Deisenroth, Marc Peter, et al. Mathematics for Machine Learning. Cambridge University Press.
- 3. Daniela Witten, Trevor Hastie, Robert Tibshirani, An Introduction to Statistical Learning with Applications in R, Second Edition, Springer.
- 4. Christopher M. Bishop, "Pattern Recognition and Machine Learning".
- 5. Kevin P. Murphy, "Machine Learning: A Probabilistic Perspective", The MIT Press.
- 6. Kevin P. Murphy, "Machine Learning, 2nd Edition, The MIT Press.
- 7. Dipanjan Sarkar, Raghav Bali, Tushar Sharma, Practical Machine Learning with Python, Apress
- 8. Yegnanarayana B, Artificial Neural Networks, Prentice-Hall India Pvt. Ltd.
- 9. "Mastering Machine Learning: A Step-by-Step Guide with MATLAB", MathWorks.
- 10. Giuseppe Ciaburro, "MATLAB for Machine Learning", Packt Publishing Limited.
- 11. U Dinesh Kumar, Manaranjan Pradhan, "Machine Learning using Python", Wiley.
- 12. Tom M. Mitchell, "Machine Learning", 1st Edition, Tata McGraw-Hill Education.

| Approval Date       |  |
|---------------------|--|
| Version             |  |
| Approval by         |  |
| Implementation Date |  |



#### CO M 21 C 22 DIGITAL IMAGE PROCESSING

| School Name                                 | School of Computer Sciences                                                                                                                                                                                                                                                                                                                                                                          |                                     |    |    |   |     |
|---------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|----|----|---|-----|
| Programme                                   | M. Sc.                                                                                                                                                                                                                                                                                                                                                                                               | M. Sc.                              |    |    |   |     |
| Course Name                                 | Digital Image                                                                                                                                                                                                                                                                                                                                                                                        | Processir                           | ng |    |   |     |
| Type of Course                              | Core                                                                                                                                                                                                                                                                                                                                                                                                 |                                     |    |    |   |     |
| Course Code                                 | CO M 21 C 22                                                                                                                                                                                                                                                                                                                                                                                         | 2                                   |    |    |   |     |
| Names of Academic<br>Staff & Qualifications | Prof. Dr. Bindu                                                                                                                                                                                                                                                                                                                                                                                      | Prof. Dr. Bindu V R, M. Sc., Ph. D. |    |    |   |     |
| Course Summary & Justification              | The course provides a thorough discussion on the fundamentals of digital image processing, relating these to contemporary technologies and applications. The students will get a deep understanding of digital image processing operations and can implement these operations practically through programming. They will also be made capable of applying this knowledge for practical applications. |                                     |    |    |   |     |
| Semester                                    | II                                                                                                                                                                                                                                                                                                                                                                                                   |                                     |    |    |   |     |
| Total<br>StudentLearningTim<br>e (SLT)      | Learning Approach e Tutoria Practica Others Total Learning Hours                                                                                                                                                                                                                                                                                                                                     |                                     |    |    |   |     |
|                                             | Explicit Teaching Seminar, Assignment, case Study etc.                                                                                                                                                                                                                                                                                                                                               | 42                                  | 28 | 42 | 8 | 120 |
| Pre-requisite                               | Overview of Computer System and basic mathematics.                                                                                                                                                                                                                                                                                                                                                   |                                     |    |    |   |     |



#### CO M 21 C 22 DIGITAL IMAGE PROCESSING

#### **COURSE OUTCOMES (CO)**

| CO<br>No.         | <b>Expected Course Outcome</b>                                                                                  | Learning<br>Domains | PSO No. |
|-------------------|-----------------------------------------------------------------------------------------------------------------|---------------------|---------|
| 1                 | Define the elements of image processing and differentiate color image models in image representation.           | U, An               | 1       |
| 2                 | Compare and Analyse various spacial domain and frequency domain image transformations and filtering techniques. | An                  | 1,2     |
| 3                 | Analyse and Compare various image enhancement techniques.                                                       | An                  | 1,2,4   |
| 4                 | Illustrate histogram processing on an image.                                                                    | A, An               | 1,2,3   |
| 5                 | Analyse and Compare various image restoration techniques.                                                       | An                  | 1,2,4   |
| 6                 | Illustrate different morphological operations on an image.                                                      | A, An               | 1,2,3   |
| 7                 | Analyse and Compare various image segmentation techniques.                                                      | An                  | 1,2,4   |
| 8                 | Illustrate segmentation of an image.                                                                            | A, An               | 1,2,3   |
| 9                 | Develop programs implementing the different image processing operations on sample images and illustrate.        | U, A                | 1,2,3,4 |
| 10                | Discuss image recognition techniques.                                                                           | U, An               | 1,2     |
| 11                | Analyse and compare the methods for image compression.                                                          | An                  | 1,2,4   |
| 12                | Discuss, analyse and compare the latest technologies and issues in Digital Image Processing.                    | C, E                | 10      |
| *Reme<br>Skill (S | mber (R), Understand (U), Apply (A), Analyse (An), Evalue)                                                      | ıate (E), Crea      | te (C), |



#### CO M 21 C 22 DIGITAL IMAGE PROCESSING

# COURSE CONTENT Content for Classroom transaction (Sub-units)

| Unit     | Course description                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Hrs | CO No.     |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------------|
| UNIT I   | Elements of digital image processing systems, Elements of visual perception, psycho visual model, brightness, contrast, hue, saturation, mach band effect, Color image fundamentals -RGB,HSI models, Image acquisition and sampling, Quantization, Image file formats, Two-dimensional convolution, correlation, and frequency responses.                                                                                                                                   | 20  | 1          |
| UNIT II  | Image Transforms- 1D DFT, 2D transforms – DFT, DCT, Discrete Sine, Walsh, Hadamard, Slant, Haar, KLT, SVD, Radon and Wavelet Transform.                                                                                                                                                                                                                                                                                                                                     | 22  | 2,12       |
| UNIT III | Image Enhancement and Restoration-Histogram modification and specification techniques, Noise distributions, Spatial averaging, Directional Smoothing, Median, Geometric mean, Harmonic mean, Contra harmonic filters, Homomorphic filtering, Color image enhancement. Image Restoration – degradation model, Unconstrained and Constrained restoration, Inverse filtering, Wiener filtering, Geometric transformations – spatial transformations, Gray-Level interpolation. | 24  | 2,3,4,5,12 |
| UNIT IV  | Image Segmentation and Recognition- Edge detection. Image segmentation by region growing, region splitting and merging, edge linking, Morphological operators: dilation, erosion, opening, and closing. Image Recognition – Patterns and pattern classes, matching by minimum distance classifier, Statistical Classifier. Matching by correlation, Neural network application for image recognition.                                                                       | 24  | 6,7,8,10,1 |



#### CO M 21 C 22 DIGITAL IMAGE PROCESSING

| UNIT V Image Compression- Need for compression, Huffman, Run Encoding, Arithmetic coding, Quantization, Block Truncation Transform Coding – DCT and Image compression standards. | Length<br>Vector<br>Coding. 22 | 9,11,12 |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|---------|--|
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|---------|--|

| Teaching and | Classroom Procedure (Mode of transaction)                                           |  |  |  |  |  |
|--------------|-------------------------------------------------------------------------------------|--|--|--|--|--|
| Learning     | Direct Instruction: Brain storming lecture, Explicit Teaching, E-learning,          |  |  |  |  |  |
| Approach     | Interactive Instruction: Active co-operative learning, Seminar, Group               |  |  |  |  |  |
|              | Assignments,                                                                        |  |  |  |  |  |
|              | Authentic learning: Library work and Group discussion, Presentation by              |  |  |  |  |  |
|              | individual student/ Group representative                                            |  |  |  |  |  |
|              |                                                                                     |  |  |  |  |  |
| Assessment   | Mode of Assessment                                                                  |  |  |  |  |  |
| Types        | A. Continuous Internal Assessment (CIA)                                             |  |  |  |  |  |
|              | <ul> <li>Internal Tests – Minimum Two (Extended answers /<br/>Practical)</li> </ul> |  |  |  |  |  |
|              | • Seminar –                                                                         |  |  |  |  |  |
|              | <ul> <li>Research Literature Review</li> </ul>                                      |  |  |  |  |  |
|              | <ul> <li>Report Writing</li> </ul>                                                  |  |  |  |  |  |
|              | <ul> <li>Presentation</li> </ul>                                                    |  |  |  |  |  |
|              | Assignment – Written, Practical, Oral Presentation and Viva                         |  |  |  |  |  |
|              | Case study/ Mini project                                                            |  |  |  |  |  |
|              | B. Semester End Examination                                                         |  |  |  |  |  |

- **1.** Rafael C. Gonzalez, Richard E. Woods, 'Digital Image Processing', Pearson Education, Inc.
- 2. Scott E Umbaugh, 'Digital Image Processing and Analysis', CRC Press.
- 3. Anil K.Jain, 'Fundamentals of Digital Image Processing', Prentice Hall of India.
- **4.** David Salomon : Data Compression The Complete Reference, Springer Verlag New York Inc.
- **5.** Rafael C. Gonzalez, Richard E. Woods, Steven Eddins, 'Digital Image Processing using MATLAB', Pearson Education.
- **6.** William K. Pratt, 'Digital Image Processing', John Wiley, NewYork.



#### CO M 21 C 22 DIGITAL IMAGE PROCESSING

**7.** Milan Sonka, Vaclav Hlavac, Roger Boyle, 'Image Processing, Analysis, and Machine Vision', Brooks/Cole, Vikas Publishing House.

| Approval Date       |  |
|---------------------|--|
|                     |  |
| Version             |  |
|                     |  |
| Approval by         |  |
|                     |  |
| Implementation Date |  |
|                     |  |



#### CO M 21 C 23 DATA MINING

| SchoolName                                  | School of Com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | School of Computer Sciences |              |            |            |                            |
|---------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--------------|------------|------------|----------------------------|
| Programme                                   | M. Sc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | M. Sc.                      |              |            |            |                            |
| Course Name                                 | Data Mining                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Data Mining                 |              |            |            |                            |
| Type of Course                              | Core                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Core                        |              |            |            |                            |
| Course Code                                 | CO M 21 C 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CO M 21 C 23                |              |            |            |                            |
| Names of Academic<br>Staff & Qualifications | Prof. Dr. Pushp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | alatha K P                  | , MCA, Pł    | nD         |            |                            |
| Course Summary & Justification              | This course provides information on various data mining methodologies and techniques and is deeply related to scientific research areas. The content includes background of datamining, data warehouse schemes and operations on them, pre-processing techniques, Frequent patterns identification, information retrieval, classification, clustering, association mining, advanced techniques for classification etc.  The students will be able to acquire a very broad yet in-depth knowledge and practice of the principles of data mining and data mining techniques after studying this course. It will help to improve their knowledge and intelligence in decision making process and enable them to be capable of handling jobs in R & D divisions of any company as software engineer/scientist. |                             |              |            |            |                            |
| Semester                                    | II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                             |              |            |            |                            |
| Total<br>StudentLearningTim<br>e (SLT)      | Learning<br>Approach                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Lecture                     | Tutoria<br>I | Practica 1 | Other<br>s | Total<br>Learning<br>Hours |
|                                             | Explicit Teaching Seminar, Assignments etc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 42                          | 28           | 42         | 8          | 120                        |
| Pre-requisite                               | Understanding                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | in Databas                  | e Manager    | ment and S | tatistics  |                            |



#### CO M 21 C 23 DATA MINING

#### **COURSE OUTCOMES (CO)**

| CO<br>No. | <b>Expected Course Outcome</b>                                                                                                                                                          | Learning<br>Domains        | PSO No.               |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-----------------------|
| 1         | Understand the various functionalities or principles of data mining.                                                                                                                    | U                          | 2                     |
| 2         | Design an efficient data warehouse model, given a data mining problem.                                                                                                                  | A, An, C                   | 1, 2                  |
| 3         | Illustrate the application of various data mining functionalities such as Association rule Mining, Classification of objects, Clustering, Information retrieval, and Outlier detection. | U, R, An                   | 2, 3                  |
| 4         | Implement the algorithms of the various data mining functionalities and analyse the performance of the algorithms to select the best.                                                   | A, An, C                   | 2, 5, 8, 10           |
| 5         | Demonstrate the benefits of various visualisation tools.                                                                                                                                | R, U, E                    | 1, 2, 3, 5,<br>10     |
| 6         | Evaluate the performance of the multiple algorithms for a specific functionality to select the best.                                                                                    | A, An, E                   | 1, 2, 3               |
| 7         | Research, identify and create alternate innovative and better than existing, solutions for a data mining problem.                                                                       | An, A, C                   | 2, 3, 7, 10           |
| 8         | Analyse a given problem and identify which data mining functionality is the most suitable one.                                                                                          | An, A                      | 1,2,5.                |
| 9         | Compare the various model evaluation techniques and identify the most suitable to evaluate a new classifier.                                                                            | A, C, S                    | 3, 4, 5               |
| 10        | Prepare a report and do a presentation on the comparative study of the applications of Data Mining in the domains: WWW, Spatial, Text, Image, and temporal data.                        | U, R, An                   | 2, 3, 5, 8            |
| 11        | Develop new clustering/classifier/outlier detection algorithms for any application, document, present and demonstrate the working of that method.                                       | An, E, C                   | 2, 5, 8               |
| 12        | Acquire knowledge and skills through self-paced and self-directed learning and adapt to changing trends through knowledge/skill updation/reskilling.                                    | U, An, A,<br>C, E          | 7, 8, 10              |
| *Reme     | ember (R), Understand (U), Apply (A), Analyse (An), Evalu                                                                                                                               | ıa <del>te (E), Crea</del> | te $\overline{(C)}$ , |



#### CO M 21 C 23 DATA MINING

# COURSE CONTENT Content for Classroom transaction (Sub-units)

| Unit     | Course description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Hrs | CO No.   |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----------|
| UNIT I   | Introduction to Data Mining, Data Mining Functionalities, Classification of Data Mining Systems, Major Issues in Data Mining, Basic Concepts of Data Warehouse, Multitired Data Warehouse Architecture, Data Warehouse Models, Data Warehouse Modeling, Data Cube, a Multidimensional Data Model, Schemas for Multidimensional Data Models, Stars, Snowflakes, Fact Constellation Technology. Typical OLAP Operations.                                                                                                                                                                                                                                                                                            | 20  | 1,2,12   |
| UNIT II  | Data Objects and Attribute Types, Basic Statistical Description of Data, Visualisation Techniques, Pixel Oriented, Geometric Projection, Icon-based, Measuring Data Similarity and Dissimilarity, Data Matrix, Dissimilarity Matrix, Measures for Nominal Attributes, Binary Attributes, Numeric Data, Ordinal Attributes, Cosine Similarity.  Needs of Preprocessing the Data, Major Tasks, Data Cleaning, Data Integration, Data Reduction, Overview of Data Reduction Strategies, Principal Component Analysis, Attribute Subset Selection, Histograms, Clustering, Transformation, Overview of Transformation Strategies, Normalisation, Discretization by Histogram analysis, Cluster, Correlation Analysis. | 24  | 1,5,12   |
| UNIT III | Mining Frequent Patterns, Associations and Correlations: Basic Concepts, Frequent Itemset Mining Methods, Apriori Algorithm, Mining Frequent Itemsets Using Vertical Data Formats, Generating Association Rules, Strong Rules and Weak Rules.                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 20  | 3,4,8,12 |



#### CO M 21 C 23 DATA MINING

|         |                                                                                                                                                                                                                                                                                                                                                                                                       |    | 3,7,8,9,12  |
|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-------------|
| UNIT IV | Introduction to Classification, Classification by Decision Tree Induction, Attribute Selection Measures, Tree Pruning, Naïve Bayesian Classification, Concepts of: Classification by Back propagation, Lazy Learners, k-Nearest Neighbor Classifiers, An Overview of Other Classification Methods, Genetic, Fuzzy Sets, Model Evaluation and Selection, Haldout Method, Cross Validation, Boot Strap. | 24 |             |
| UNIT V  | Introduction to Cluster Analysis, An Overview of Major Clustering Methods, Partitioning Methods, Hierarchical Methods, Density-Based Methods, Probabilistic Model-Based Methods, Expectation-Maximisation Algorithm, Outlier Detection, Outlier Detection Methods, Introduction to Spatio-temporal Data Mining, Multimedia Data Mining, Text Mining, Mining the World Wide Web.                       | 24 | 3,8,10,11,1 |

| Teaching and | Classroom Procedure (Mode of transaction)                                       |  |  |  |  |  |
|--------------|---------------------------------------------------------------------------------|--|--|--|--|--|
| Learning     | Direct Instruction: Brain storming lecture, Explicit Teaching, E-learning,      |  |  |  |  |  |
| Approach     | Interactive Instruction: Active co-operative learning, Seminar, Group           |  |  |  |  |  |
|              | Assignments                                                                     |  |  |  |  |  |
|              | Authentic learning: Library work and Group discussion, Presentation by          |  |  |  |  |  |
|              | individual student/Group representative.                                        |  |  |  |  |  |
|              |                                                                                 |  |  |  |  |  |
| Assessment   | Mode of Assessment                                                              |  |  |  |  |  |
| Types        | A. Continuous Internal Assessment (CIA)                                         |  |  |  |  |  |
|              | <ul> <li>Internal Tests – Minimum two (Extended answers / Practical)</li> </ul> |  |  |  |  |  |
|              | Seminar —                                                                       |  |  |  |  |  |
|              | <ul> <li>Research Literature review</li> </ul>                                  |  |  |  |  |  |
|              | ■ Report writing                                                                |  |  |  |  |  |
|              | <ul> <li>Presentation</li> </ul>                                                |  |  |  |  |  |
|              | Assignments – Written, Practical, Oral presentation and viva                    |  |  |  |  |  |
|              | Case study                                                                      |  |  |  |  |  |
|              |                                                                                 |  |  |  |  |  |



#### CO M 21 C 23 DATA MINING

| B. End Semester Examination |
|-----------------------------|
|                             |
|                             |

- **1.** Data Mining Concepts and Techniques JIAWEI HAN & MICHELINE KAMBER, ELSEVIER, 3rd Edition.
- **2.** MehmedKantardzic, Data Mining: Concepts, Models, Methods, and Algorithms, Wiley.
- **3.** Data Mining Techniques ARUN K PUJARI, University Press.
- **4.** Building the DataWarehouse- W. H. Inmon, Wiley Dreamtech India Pvt. Ltd.
- **5.** Data Warehousing in the Real World SAM ANAHORY & DENNIS MURRAY. Pearson Edn Asia.
- **6.** Data Warehousing Fundamentals PAULRAJ PONNAIAH WILEY STUDENT EDITION
- 7. The Data Warehouse Life cycle Tool kit—RALPH KIMBALL WILEY STUDENT EDITION

| Approval Date       |  |
|---------------------|--|
|                     |  |
| Version             |  |
|                     |  |
| Approval by         |  |
|                     |  |
| Implementation Date |  |
|                     |  |



#### CO M 21 C 24 SOFTWARE ENGINEERING

| Name of School                                 | School of Comput                                                                                                                                                                           | er Science                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | es .         |             |             |                            |  |
|------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------|-------------|----------------------------|--|
| Programme                                      | M. Sc                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |             |             |                            |  |
| Name of Course                                 | Software Engine                                                                                                                                                                            | Software Engineering                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |             |             |                            |  |
| Type of Course                                 | Core                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |             |             |                            |  |
| Course Code                                    | CO M 21 C 24                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |             |             |                            |  |
| Names of<br>Academic Staff<br>& Qualifications | Dr. Abdul Jabbar                                                                                                                                                                           | P, M Phil,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PhD          |             |             |                            |  |
| Course<br>Summary &<br>Justification           | implementation of software required design concepts, practical problems that must be kept course is very implementations focuses on in the industries Software Testing, Marketing and pro- | The course covers the theoretical concept of the design, analysis, and implementation of software development process. Areas include software requirement engineering, Process Models, Object oriented design concepts, Project management concept and solving real world practical problems. This course gives awareness on information Ethics that must be kept throughout the software development process. This course is very important in terms of employability of the students. The Course focuses on software research and development job opportunities in the industries such as Software consultant, Software Designer, Software Testing, Software Developer, Project Manager, SEO, Software |              |             |             |                            |  |
| Semester                                       | Second Semester                                                                                                                                                                            | Π                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Π            | T           | 1           | T                          |  |
| Total Student<br>Learning Time<br>(SLT)        | Learning<br>Approach                                                                                                                                                                       | Lecture                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Tutoria<br>1 | Practical   | Others      | Total<br>Learning<br>Hours |  |
|                                                | Direct Teaching                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |             |             |                            |  |
|                                                | Seminar,<br>Assignments,<br>Self Learning<br>etc.                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |             | 50          |                            |  |
| Pre-requisite                                  | The learner must h                                                                                                                                                                         | nave gaine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | d the fund   | amental con | cepts of so | oftware.                   |  |



#### CO M 21 C 24 SOFTWARE ENGINEERING

#### **COURSE OUTCOMES (CO)**

| CO<br>No. | Expected Course Outcome                                                              | Learning<br>Domains | PSO No.     |  |  |
|-----------|--------------------------------------------------------------------------------------|---------------------|-------------|--|--|
| 1         | Practice on Information Ethics and Software Engineering                              | I,R,U               | 1,2,10      |  |  |
| 2         | Understand and formulate Software Requirement Engineering                            | A,An,S,E            | 3,4,5       |  |  |
| 3         | Expertise in Object Oriented Software Design                                         | C,A,I,S ,E          | 3,4,5       |  |  |
| 4         | Identify design problem and analyze Software Quality                                 | U,A,An,C,A          | 3,4,5 ,8    |  |  |
|           | Assurance                                                                            | t                   |             |  |  |
| 5         | Manage and develop Software using software project management                        | A,C,An,E            | 3,4         |  |  |
| 6         | Formulate and evaluate possible software development process models in advance level | Ap,S,C,E            | 5,6,7, 3,4  |  |  |
| 7         | Demonstrate the ability to analyze, design, apply and                                | U,Ap,R,I, At        | 5,6,7,8,9,1 |  |  |
|           | use of software requirement engineering and quality                                  | ,Ap                 | 0           |  |  |
|           | assurance in software project                                                        |                     |             |  |  |
| *Reme     | *Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C),    |                     |             |  |  |

<sup>\*</sup>Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S).

# COURSE CONTENT Content for Classroom transaction (Sub-units)

| Unit    | Course description                                                                                                                                                                                                                                                   | Hrs | CO No. |
|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------|
| UNIT I  | Information and Computer Ethics, Software and Software Engineering, Software Development Process Models – The Waterfall Model, V-Model, Incremental Process Models, Prototyping, Spiral Model, Concurrent Models. Agile Development, Principles that Guide Practice. | 10  | 1,6    |
| UNIT II | Understanding Requirements, Requirements Modeling: Scenarios, Information, and Analysis Classes, Requirements Modeling for WebApps, Design Concepts, Software Architecture: Definition, Importance and Styles, User Interface Design.                                | 15  | 2,7    |



#### CO M 21 C 24 SOFTWARE ENGINEERING

| UNIT III | Object Oriented Software Design using UML,<br>Class Diagram, Deployment Diagram, Use case<br>Diagram, Sequence Diagram, Communication<br>Diagram, Activity Diagram, State Diagram.                                                                   | 15 | 3   |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----|
| UNIT IV  | Quality Concepts, Review Techniques, Software Quality Assurance, Software Configuration Management, Product Metrics, Software Testing Strategies, Testing Conventional Applications, Testing Object-Oriented Applications, Testing Web Applications. | 15 | 4,7 |
| UNIT V   | Project Management Concepts, Process and Project Metrics, Estimation for Software Projects, Project Scheduling, Risk Management. Searching and Application.                                                                                          | 15 | 5   |

| Teaching and<br>Learning<br>Approach | Classroom Procedure (Mode of transaction) Direct Instruction: Brain storming lecture, Explicit Teaching, E-learning, Interactive Instruction: Active co-operative learning, Seminar, Group Assignments Authentic learning: Library work and Group discussion, Presentation by individual student/Group representative. |  |  |  |  |  |
|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|                                      |                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |
| Assessment                           | Mode of Assessment                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
| Types                                | A. Continuous Internal Assessment (CIA)                                                                                                                                                                                                                                                                                |  |  |  |  |  |
|                                      | <ul> <li>Internal Tests – Minimum two (Extended answers / Practical)</li> </ul>                                                                                                                                                                                                                                        |  |  |  |  |  |
|                                      | • Seminar –                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |
|                                      | <ul> <li>Research Literature review</li> </ul>                                                                                                                                                                                                                                                                         |  |  |  |  |  |
|                                      | <ul> <li>Report writing</li> </ul>                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
|                                      | • Presentation                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |
|                                      | Assignments – Written, Practical, Oral presentation and viva                                                                                                                                                                                                                                                           |  |  |  |  |  |
|                                      | Case study                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |
|                                      | B. End Semester Examination                                                                                                                                                                                                                                                                                            |  |  |  |  |  |

- 1. Pressman, R.S., Software Engineering: A Practitioner's Approach, MGHISE, 7th Edition.
- 2. Bernd Bruegg and Allen H, Object Oriented Software Engineering Using UML, Patterns and Java, 2<sup>nd</sup> Editio.



#### CO M 21 C 24 SOFTWARE ENGINEERING

- 3. Rajib Mall, Fundamentals of Software Engineering, 4th Edition, PHI.
- 4. Anirban Basu, Software Quality Assurance, Testing and Metrics, First Edition, PHI
- 5. Sommerville, I., Software Engineering, Pearson Education, 7th Ed..
- 6. Schach, S., Software Engineering, TMH, 7th Ed..
- 7. Kelkar, S.A., Software Engineering: A Concise Study, PHI.
- 8. Hughes, B and Cotterel, M., Software Project Management, 3rd Edition, TMH.
- 9. Kenneth E. Himma, The Handbook of Information and Computer Ethics, Wiley.

| Approval Date         |  |
|-----------------------|--|
|                       |  |
| Version               |  |
|                       |  |
| Approval by           |  |
| Landana atatia a Data |  |
| Implementation Date   |  |
|                       |  |



## CO M 21 C 25 MINOR PROJECT USING ADVANCED JAVA & OBJECT ORIENTED ANALYSIS AND DESIGN

| SchoolName                               | School of Computer Sciences                      |                                                                                                                                                                                                                                                                                                                                             |              |            |        |                            |
|------------------------------------------|--------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------------|--------|----------------------------|
| Programme                                | M.Sc.                                            |                                                                                                                                                                                                                                                                                                                                             |              |            |        |                            |
| Course Name                              | Minor Project usi<br>Design                      | Minor Project using Advanced Java & Object Oriented Analysis and Design                                                                                                                                                                                                                                                                     |              |            |        |                            |
| Type of Course                           | Core                                             |                                                                                                                                                                                                                                                                                                                                             |              |            |        |                            |
| <b>Course Code</b>                       | CO M 21 C 25                                     |                                                                                                                                                                                                                                                                                                                                             |              |            |        |                            |
| Names of Academic Staff & Qualifications | Dr. Ivy Prathap P                                | h.D.                                                                                                                                                                                                                                                                                                                                        |              |            |        |                            |
| Course Summary & Justification           | engineering and course gives awa development eth | This course aims to develop a minor software project based on software engineering and object oriented concepts using Advanced Java. This course gives awareness and prompt them to keep-up the software development ethics. It enables the students to avail jobs such as software engineers (in general) and web applications developers. |              |            |        |                            |
| Semester                                 | II                                               |                                                                                                                                                                                                                                                                                                                                             |              |            |        |                            |
| Total Student<br>Learning Time<br>(SLT)  | Learning<br>Approach                             | Lecture                                                                                                                                                                                                                                                                                                                                     | Tutoria<br>1 | Pract ical | Others | Total<br>Learning<br>Hours |
|                                          | Explicit<br>Teaching                             |                                                                                                                                                                                                                                                                                                                                             | 14           | 84         |        |                            |
|                                          | Assignments,<br>Viva, Record<br>Preparation etc. |                                                                                                                                                                                                                                                                                                                                             |              |            | 22     | 120                        |
| Pre-requisite                            | Core Java                                        | •                                                                                                                                                                                                                                                                                                                                           | •            | •          | •      |                            |



### CO M 21 C 25 MINOR PROJECT USING ADVANCED JAVA & OBJECT ORIENTED ANALYSIS AND DESIGN

#### **COURSE OUTCOMES (CO)**

| CO              | <b>Expected Course Outcome</b>                                | Learning       | PSO No.     |
|-----------------|---------------------------------------------------------------|----------------|-------------|
| No.             | •                                                             | Domains        |             |
| 1               | Prepare SRS, DFD, Activity diagram                            | U, C           | 1,2.3       |
| 2               | Develop skill to prepare UML, Class Diagram,                  | U,R, A, C,     | 1,2,3,4,    |
|                 | Deployment Diagram, Use case Diagram, Sequence                | S              | 7,10        |
|                 | Diagram, Communication Diagram, Activity Diagram              |                |             |
|                 | and State Diagram.                                            |                |             |
|                 |                                                               |                |             |
| 3               | Write, test and debug Java programs using Remote              | A, An          | 1,2,3       |
|                 | Method Invocation                                             |                |             |
| 4               | Familiarize with Servlet Form Processing using Java           | U, R           | 1,2,3       |
| 5               | Apply session management to real world problems.              | A, C           | 1,2,3,4,7   |
|                 |                                                               |                | 10          |
| 6               | Illustrate the uses of Using Database with JSP                | A              | 1,2,3,4     |
| 7               | Discover the capabilities of Struts ad Hibernate              | S, C, E        | 1,2,3,4,7,1 |
|                 |                                                               |                | 0           |
| 8               | Interpret the concepts of Spring framework                    | An, E          | 1,2,3,4,7,1 |
|                 |                                                               |                | 0           |
| 9               | Develop programs using Springboot                             | C, A           | 1,2,3,4,    |
|                 |                                                               |                | 7,10        |
| 10              | Achieve skill to develop web applications using Java          | S, C           | 1,2,3,4,    |
|                 |                                                               |                | 7,10        |
| *Rem<br>Skill ( | ember (R), Understand (U), Apply (A), Analyse (An), Eva<br>S) | luate (E), Cre | ate (C),    |

# COURSE CONTENT Content for Classroom transaction (Sub-units)

| Unit        | Course description                                                                                                                                                                                                                        | Hrs    | CO No. |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|
| Unit UNIT I | Software Engineering Concepts, Software and Software Engineering, Software Development Process Models – The Waterfall Model, V-Model, Incremental Process Models, Prototyping, Spiral Model, Concurrent Models. Software                  | Hrs 20 | 1,2    |
|             | Implementation and Management process-<br>inspection, Agile Development, Principles that<br>Guide Practice. Object Oriented Programming<br>Concepts, Object Oriented Software Design using<br>UML, Class Diagram, Deployment Diagram, Use |        |        |



### CO M 21 C 25 MINOR PROJECT USING ADVANCED JAVA & OBJECT ORIENTED ANALYSIS AND DESIGN

|          | case Diagram, Sequence Diagram, Communication Diagram, Activity Diagram and State Diagram.                                                                                                                                                                                                                                                                       |    |           |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----------|
| UNIT II  | Distributed Application using Remote Method Invocation: Introduction to RMI, Defining the Remote Interface, Implementing the Remote Interface, Defining the Client, Compile and Execute the Server and the Client. Java Servlets: Servlet Overview, Basic Servlet Architecture, Servlet Form Processing, Session Management, Database Management Using Servlets. | 15 | 3,4,5     |
| UNIT III | Java Server Pages: Basic JSP Scripting, JSP Architecture, Using JSP Scripting Elements, Implicit Objects, JSP Directives, Using Database with JSP, Java beans and their Application in JSP.                                                                                                                                                                      | 20 | 6         |
| UNIT IV  | Distributed Applications and Components: J2EE architecture, Enterprise Java Beans (EJB) - Application Servers-Types of Bean - Session Bean, Entity Bean and Message Driven Bean.                                                                                                                                                                                 | 23 | 5         |
| UNIT V   | Struts and Hibernate: Overview of MVC Design, Struts, Components, Configuration files-Introduction to Hibernate, Hibernate Application, Hibernate Object Life Cycle. Spring framework: Spring Modules, Inversion of Control and Dependency injection, Web Services: SOAP, RESTful. Introduction to Springboot.                                                   | 20 | 7,8,9, 10 |

| Teaching and | Classroom Procedure (Mode of transaction)                                  |
|--------------|----------------------------------------------------------------------------|
| Learning     | Explicit Teaching, E-learning, Active co-operative learning, Inquiry-based |
| Approach     | instruction, Authentic learning, Library work and Group discussions        |
| Assessment   | Mode of Assessment                                                         |
| Types        |                                                                            |
|              | A. Continuous Internal Assessment (CIA)                                    |
|              | Technical skills evaluation - Correctness of programs                      |
|              | ● Internal Tests – Minimum two (Practical)                                 |
|              | Assignments -Lab Records, Practical and Viva                               |
|              | Case study                                                                 |
|              |                                                                            |
|              | B. Semester End Examination                                                |



### CO M 21 C 25 MINOR PROJECT USING ADVANCED JAVA & OBJECT ORIENTED ANALYSIS AND DESIGN

- **1.** Budi Kurniawan, Sams, Java for the Web with Servlets, JSP, and EJB: A Developer's Guide to Scalable J2EE Solutions.
- 2. Karl Avedal, Professional JSP, Wrox Press, Second Edition.
- **3.** James Holmes, The Complete Reference to Struts, Tata McGraw-Hill, Second Edition.
- **4.** Jeff Linwood, Dave Minter, Beginning to Hibernate, Second Edition.
- **5.** Rod Johnson, Juergen Hoeller, Alef Arendsen, Thomas R, Professional Java Development with the Spring Framework, Wiley India Pvt. Ltd..
- **6.** <u>Greg L. Turnquist</u>, Learning Spring Boot, Packt Publishing.
- 7. <a href="https://tomcat.apache.org/">https://tomcat.apache.org/</a>
- **8.** <a href="https://olemiss.edu/projects/servlets/">https://olemiss.edu/projects/servlets/</a>
- 9. https://spring.io/



### CO M 21 E 21 WIRELESS COMMUNICATION AND SENSOR NETWORKS

#### **ELECTIVES**

| SchoolName                                  | School of Con                                                                          | nputer Sci                               | ences                                  |                                     |                                      |                                             |
|---------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------|----------------------------------------|-------------------------------------|--------------------------------------|---------------------------------------------|
| Programme                                   | M.Sc.                                                                                  |                                          |                                        |                                     |                                      |                                             |
| Course Name                                 | Wireless Communication and Sensor Networks                                             |                                          |                                        |                                     |                                      |                                             |
| Type of Course                              | Elective                                                                               |                                          |                                        |                                     |                                      |                                             |
| Course Code                                 | CO M 21 E 21                                                                           |                                          |                                        |                                     |                                      |                                             |
| Names of Academic<br>Staff & Qualifications |                                                                                        |                                          |                                        |                                     |                                      |                                             |
| Course Summary & Justification              | Telecommunic<br>wires, cables of<br>distance or acro<br>concept, gene<br>networks, Rou | or any oth<br>oss the glob<br>rations of | er electric<br>e. This cou<br>Cellular | al conductourse introdu<br>communic | ors withi<br>ices basic<br>ation, ac | n a shorter<br>s of cellular<br>lhoc/sensor |
| Semester                                    | II                                                                                     | <u> </u>                                 |                                        |                                     |                                      |                                             |
| Total<br>StudentLearningTim<br>e (SLT)      | Learning<br>Approach                                                                   | Lecture                                  | Tutoria<br>1                           | Practica 1                          | Other<br>s                           | Total<br>Learning<br>Hours                  |
|                                             | Explicit Teaching Seminar, Assignments etc.                                            | 42                                       | 14                                     | 28                                  | 36                                   | 120                                         |
| Pre-requisite                               | Basics of Data                                                                         | Communio                                 | cation                                 | ı                                   | 1                                    |                                             |



### CO M 21 E 21 WIRELESS COMMUNICATION AND SENSOR NETWORKS

#### **COURSE OUTCOMES (CO)**

| CO              | <b>Expected Course Outcome</b>                                                                             | Learning       | PSO No.  |
|-----------------|------------------------------------------------------------------------------------------------------------|----------------|----------|
| No.             |                                                                                                            | Domains        |          |
| 1               | Understand fundamentals of Wireless communication                                                          | U              | 1,2,10   |
|                 | System                                                                                                     |                |          |
| 2               | Elucidate generation of Cellular Networks                                                                  | Е              | 2,10     |
| 3               | Analyze various types of Channel Assignment Strategies                                                     | An             | 3,10     |
| 4               | Understand adhoc/sensor networks                                                                           |                |          |
| 5               | Illustrate issues in adhoc wireless networks                                                               | A              | 3,9,10   |
| 6               | Examine MAC protocols for adhoc wireless networks                                                          | A              | 1,10     |
| 7               | Investigate the role of Routing Protocols for sensor network, location discovery, quality and other issues | Е              | 2,10     |
| 8               | Apply Quality of Service in energy management                                                              | A              | 1,9,10   |
| *Rem<br>Skill ( | ember (R), Understand (U), Apply (A), Analyse (An), Evalu<br>(S)                                           | uate (E), Cred | ute (C), |

# COURSE CONTENT Content for Classroom transaction (Sub-units)

| Unit    | Course description                                                                                                                                                                                                                                                                                                                                                                                 | Hrs | CO No. |
|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------|
| UNIT I  | Evolution of mobile communications, Mobile Radio System around the world, Types of Wireless communication System, Comparison of Common wireless system, Trends in Cellular radio and personal communication. Second generation Cellular Networks, Third Generation (3G), 4G and 5G networks. Wireless Local Loop (WLL), Wireless Local Area networks (WLAN), Bluetooth and Personal Area Networks. | 16  | 1,2    |
| UNIT II | The Cellular Concept: Hexagonal geometry cell<br>and concept of frequency reuse, Channel<br>Assignment Strategies, Distance to frequency<br>reuse ratio, Handoff Strategies, Umbrella Cell<br>Concept, Trunking and Grade of Service,<br>Improving Coverage & Capacity in Cellular                                                                                                                 | 18  | 3      |



## CO M 21 E 21 WIRELESS COMMUNICATION AND SENSOR NETWORKS

|          | System-cell splitting, Cell sectorization, Repeaters, Micro cell zone concept.                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |         |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|---------|
| UNIT III | Introduction to adhoc/sensor networks: Key definitions of adhoc/ sensor networks, unique constraints and challenges, advantages of adhoc/sensor network, driving applications, issues in adhoc wireless networks, issues in design of sensor network, sensor network architecture, data dissemination and gathering. MAC Protocols: Issues in designing MAC protocols for adhoc wireless networks, design goals, classification of MAC protocols, MAC protocols for sensor network, location discovery, quality and other issues. | 17 | 4,5,6,7 |
| UNIT IV  | Routing Protocols: Issues in designing a routing protocol, classification of routing protocols, tabledriven, on-demand, hybrid, flooding, hierarchical, and power aware routing protocols.                                                                                                                                                                                                                                                                                                                                        | 15 | 8       |
| UNIT V   | QoS and Energy Management: Issues and Challenges in providing QoS, classifications, MAC, network layer solutions, QoS frameworks, need for energy management, classification, battery, transmission power and system power management schemes.                                                                                                                                                                                                                                                                                    | 18 | 8       |

| Teaching and | Classroom Procedure (Mode of transaction)                                                                                                                                                         |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Learning     | Direct Instruction: Brain storming lecture, Explicit Teaching, E-learning,                                                                                                                        |
| Approach     | Interactive Instruction: Active co-operative learning, Seminar, Group Assignments Authentic learning: Library work and Group discussion, Presentation by individual student/Group representative. |
| Assessment   | Mode of Assessment                                                                                                                                                                                |
| Types        | A. Continuous Internal Assessment (CIA)                                                                                                                                                           |
|              | <ul> <li>Internal Tests – Minimum two (Extended answers)</li> </ul>                                                                                                                               |
|              | Seminar –                                                                                                                                                                                         |
|              | <ul> <li>Research Literature review</li> </ul>                                                                                                                                                    |
|              | <ul> <li>Report writing</li> </ul>                                                                                                                                                                |
|              | <ul><li>Presentation</li></ul>                                                                                                                                                                    |



### CO M 21 E 21 WIRELESS COMMUNICATION AND SENSOR NETWORKS

Assignments – Written, Oral presentation and viva
 Case study
 B. Semester End Examination

- 1. Theodore S. Rappaport, Wireless Communication, Prentice Hall.
- 2. Vijay Garg, Wireless Communications and Networking, Elsevier.
- 3. Feng Zhao and Leonides Guibas, Wireless sensor networks, Elsevier publication.
- 4. Jochen Schiller, Mobile Communications, Pearson Education, 2nd Edition.
- 5. William Stallings, Wireless Communications and Networks, Pearson Education.

| Approval Date       |  |
|---------------------|--|
| Version             |  |
| Approval by         |  |
| Implementation Date |  |



#### CO M 21 E 22 CYBER PHYSICAL SYSTEMS

| Name of School                              | School of Com                                         | outer Science               | 2.5          |           |           |         |
|---------------------------------------------|-------------------------------------------------------|-----------------------------|--------------|-----------|-----------|---------|
| Traine of Selfoor                           | Belloof of Comp                                       | School of Computer Sciences |              |           |           |         |
| Programme                                   | M. Sc                                                 |                             |              |           |           |         |
| Name of Course                              | Cyber Physical                                        | l Systems                   |              |           |           |         |
| Type of Course                              | Elective                                              |                             |              |           |           |         |
| Course Code                                 | CO M 21 E 22                                          |                             |              |           |           |         |
| Names of Academic<br>Staff & Qualifications | Dr. Abdul Jabbar P, MPhil, PhD                        |                             |              |           |           |         |
| Course Summary & Justification              | The course cov<br>system. The top<br>security challen | ic covered d                |              | -         | • •       | •       |
| Semester                                    | SecondSemeste                                         | r                           |              |           |           |         |
| Total                                       | Learning                                              | Lecture                     |              |           |           |         |
| StudentLearningTim e (SLT)                  | Approach                                              |                             | Tutoria<br>1 | Practical | Others    | Total   |
|                                             | Direct<br>Teaching                                    | 42                          | 14           | 28        |           | 120     |
|                                             | Assignments,<br>Seminar, self<br>study                |                             |              |           | 36        | 120     |
| Pre-requisite                               | The learner m<br>Networking                           | nust have g                 | gained the   | fundamen  | tal conce | epts of |

#### **COURSE OUTCOMES (CO)**

| CO  | <b>Expected Course Outcome</b>                                                                                               | Learning | PSO No. |
|-----|------------------------------------------------------------------------------------------------------------------------------|----------|---------|
| No. |                                                                                                                              | Domains  |         |
| 1   | Identify the importance of cross domain analysis and adaptive control of cyber physical system.                              | A,R,U    | 1,2,10  |
| 2   | Analysis and verify various distributed consensus control for wireless CPS and communication channels of multi agent system. | A,An,S,E | 3,4,5   |
| 3   | Understand various CPS Control in online and optimization of CPS.                                                            | A,S ,E   | 2,3,4   |
| 4   | Analyse and evaluate 5G MTS architecture and communication of industrial CPS                                                 | An,C,E,A | 3,4,5   |



#### CO M 21 E 22 CYBER PHYSICAL SYSTEMS

|                                   | evaluate reliable Cyber system to manage              | S,C,E   | 1216             |
|-----------------------------------|-------------------------------------------------------|---------|------------------|
| data and commu                    | • • •                                                 | 5,C,E   | 1,3,4,6          |
| 7 Demonstrate the create Cyber Ph | e ability to analyze, design, apply and ysical System | U,A,R,C | 5,6,7,8,9,1<br>0 |

<sup>\*</sup>Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S)

#### **COURSE CONTENT**

#### **Content for Classroom transaction (Sub-units)**

| Unit     | Course description                                                                                                                                                                                            | Hrs | CO No. |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------|
| UNIT I   | Introduction to CPS; Characteristics of CPS, CPS Domains, Cross-Domain Analysis, Adaptive control in CPS.                                                                                                     | 15  | 1,2,7  |
| UNIT II  | Distributed Consensus control for wireless CPS, Communication channels of multi agent system, Consensus control, Interaction control theory, Distributed control, Adaptive Quantization, Transmission length. | 20  | 2,7    |
| UNIT III | Online control and optimization of CPS, Framework,IPA, Data harvesting problems, Direct RF energy harvesting, Relayed RF energy harvesting.                                                                   | 15  | 2,3,7  |
| UNIT IV  | Industrial CPS, Communication in 5G MTS, Challenges and research trends, Network architecture for MTC, RA for MTC.                                                                                            | 20  | 4,6,7  |
| UNIT V   | Data reliability challenge, Network wide programming challenges, CPS and human action, Security and privacy of CPS, Validation Verification and formal methods of CPS.                                        | 14  | 5,6,7  |



#### CO M 21 E 22 CYBER PHYSICAL SYSTEMS

| Classroom  | Mode of transaction                                                     |  |  |  |
|------------|-------------------------------------------------------------------------|--|--|--|
| Procedure  | Direct Instruction: Brain storming lecture, Practical Session, Explicit |  |  |  |
|            | Teaching, E-learning, Interactive Instruction:, Active co-operative     |  |  |  |
|            | learning, Seminar, Group Assignments Authentic learning, Library work   |  |  |  |
|            | and Group discussion, Presentation by individual student/ Group         |  |  |  |
|            | representative.                                                         |  |  |  |
| Assessment | Mode of Assessment                                                      |  |  |  |
| Types      | A. Continuous Internal Assessment (CIA)                                 |  |  |  |
|            | <b>10.</b> Internal Tests – Minimum two (Extended answers / Practical)  |  |  |  |
|            | 11.Seminar –                                                            |  |  |  |
|            | <ul> <li>Research Literature review</li> </ul>                          |  |  |  |
|            | <ul> <li>Report writing</li> </ul>                                      |  |  |  |
|            | <ul><li>Presentation</li></ul>                                          |  |  |  |
|            | <b>12.</b> Assignments – Written, Practical, Oral presentation and viva |  |  |  |
|            | 13. Case study/Mini project                                             |  |  |  |
|            | r J                                                                     |  |  |  |
|            | B. Semester End Examination                                             |  |  |  |

- 1. Danda B. Rawat, Sabina Jeschke, Christian Brecher, Cyber-Physical Systems Foundations, Principles and Applications, Elsevier Science.
- 2. Glenn A. Fink, Sabina Jeschke, Security and Privacy in Cyber-Physical Systems Foundations, Principles, and Applications, Wiley.
- 3. Walid M. Taha, Abd-Elhamid M. Taha, Johan Thunberg, Cyber-Physical Systems: A Model-Based Approach, Springer International Publishing.

| Approval Date       |  |
|---------------------|--|
| Version             |  |
| Approval by         |  |
| Implementation Date |  |



### CO M 21 E 23 DISTRIBUTED SYSTEMS AND PARALLEL COMPUTING

| Name of School                                 | School of Computer Sciences                                                                                          |         |          |           |        |       |
|------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|---------|----------|-----------|--------|-------|
| Programme                                      | M. Sc                                                                                                                |         |          |           |        |       |
| Name of Course                                 | Distributed Systems and Parallel Computing                                                                           |         |          |           |        |       |
| Type of Course                                 | Elective                                                                                                             |         |          |           |        |       |
| Course Code                                    | CO M 21 E 23                                                                                                         |         |          |           |        |       |
| Names of<br>Academic Staff<br>& Qualifications | Dr. Abdul Jabbar P, MPhil, PhD                                                                                       |         |          |           |        |       |
| Course<br>Summary &<br>Justification           | The course covers the advanced concept of the distributed system, cloud environment and distributed data management. |         |          |           |        |       |
| Semester                                       | Second Semester                                                                                                      |         |          |           |        |       |
| Total Student<br>Learning Time                 | Learning<br>Approach                                                                                                 | Lecture | Tutorial | Practical | Others | Total |
| (SLT)                                          | Direct teaching:                                                                                                     | 42      | 14       | 28        |        | 120   |
|                                                | Seminar,<br>Assignment, Self<br>learning                                                                             |         |          |           | 36     |       |
| Pre-requisite                                  | The learner must have gained the fundamental concepts of Distributed System                                          |         |          |           |        |       |

#### **COURSE OUTCOMES (CO)**

| CO  | <b>Expected Course Outcome</b>                                                                             | Learning       | PSO No. |
|-----|------------------------------------------------------------------------------------------------------------|----------------|---------|
| No. |                                                                                                            | <b>Domains</b> |         |
| 1   | Recognize the architectural models, features and challenges of Distributed Systems.                        | A,R,U          | 1,2,5   |
| 2   | Demonstrate and evaluate the various distributed objects communication and algorithm.                      | A,An,S,E       | 1,3,4,5 |
| 3   | Exploration of characteristics and features of distributed computing in various cloud environment.         | A,S ,E         | 2,3,4   |
| 4   | Compare and analysis the parallel computing models, laws and theorems and parallel computation complexity. | An,C,E         | 3,4,5   |
| 5   | Manage and demonstrate basic file operating system and Hadoop file system and data using HDFs.             | A,C,An,E       | 3,4,5   |



## CO M 21 E 23 DISTRIBUTED SYSTEMS AND PARALLEL COMPUTING

| 6                                                                           | Illustrate the applications of distributed system and | S,C,E    | 1,3,4,6     |  |
|-----------------------------------------------------------------------------|-------------------------------------------------------|----------|-------------|--|
|                                                                             | parallel computing-Role to manage data.               |          |             |  |
| 7                                                                           | Demonstrate the ability to design, apply and analyze  | U,R,An,A | 5,6,7,8,9,1 |  |
|                                                                             | distributed system and data.                          |          | 0           |  |
| *Pomowbox (P) Undowstand (U) Apply (A) Angles (An) Engly sto (E) Crosto (C) |                                                       |          |             |  |

<sup>\*</sup>Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S)

#### **COURSE CONTENT**

#### **Content for Classroom transaction (Sub-units)**

| Unit     | Hrs                                                                                                                                                                                                                                                                                                                                                                             | CO No. |       |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------|
| UNIT I   | Characterization of distributed systems:<br>Introduction, Examples of Distributed Systems,<br>Resource sharing and the Web, Challenges,<br>Architectural models, Fundamental models,<br>Networking issues.                                                                                                                                                                      | 15     | 1,7   |
| UNIT II  | Distributed Objects and Remote Invocation: Communication between Distributed Objects, Remote Procedure Call, Remote Method Invocation, Request Reply Protocol. Overview of Distributed Mutual Exclusion-Central Server Algorithm and Ring-Based Algorithm, Elections- Ring based Election Algorithm.                                                                            | 20     | 2,7   |
| UNIT III | Distributed Computing and Cloud Computing, introduction, Characteristics, Difference, History of Cloud Computing and Distributed Computing, Pros and cons, Security.                                                                                                                                                                                                            | 15     | 3,7   |
| UNIT IV  | Overview of Parallel Systems, Modeling Parallel Computation, Micro-Processor Models, Parallel Computation Complexity, Laws and Theorems of Parallel Computation, OpenCL for Massively Parallel Processors.                                                                                                                                                                      | 20     | 4,5,7 |
| UNIT V   | Introduction to Hadoop, Data, Data Storage and Analysis, MapReduce: Weather Dataset, Analyzing with Unix Tool, Scaling Out, Hadoop Streaming, Hadoop Pipes. Design of HDFS, Blocks, Namenodes and datanodes, Command line Interface, Basic File system Operation, Hadoop file system, Interfaces, Reading data from Hadoop URL, Reading data from FileSystem API, writing data. | 14     | 5,6,7 |



## CO M 21 E 23 DISTRIBUTED SYSTEMS AND PARALLEL COMPUTING

| Classroom  | Mode of transaction                                                                |  |  |  |  |  |  |  |
|------------|------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Procedure  | Direct Instruction: Brain storming lecture, Practical Session, Explicit Teaching,  |  |  |  |  |  |  |  |
|            | E-learning, Interactive Instruction:, Active co-operative learning, Seminar, Group |  |  |  |  |  |  |  |
|            | Assignments Authentic learning, Library work and Group discussion, Presentation    |  |  |  |  |  |  |  |
|            | by individual student/ Group representative.                                       |  |  |  |  |  |  |  |
|            |                                                                                    |  |  |  |  |  |  |  |
| Assessment | Mode of Assessment                                                                 |  |  |  |  |  |  |  |
| Types      | A. Continuous Internal Assessment (CIA)                                            |  |  |  |  |  |  |  |
|            | <b>14.</b> Internal Tests – Minimum two (Extended answers / Practical)             |  |  |  |  |  |  |  |
|            | 15. Seminar –                                                                      |  |  |  |  |  |  |  |
|            | <ul> <li>Research Literature review</li> </ul>                                     |  |  |  |  |  |  |  |
|            | <ul> <li>Report writing</li> </ul>                                                 |  |  |  |  |  |  |  |
|            | <ul> <li>Presentation</li> </ul>                                                   |  |  |  |  |  |  |  |
|            | <b>16.</b> Assignments – Written, Practical, Oral presentation and viva            |  |  |  |  |  |  |  |
|            | 17. Case study/Mini project                                                        |  |  |  |  |  |  |  |
|            | B. Semester End Examination                                                        |  |  |  |  |  |  |  |

- 1. George Coulouris, Jean Dollimore, Tim Kindberg, Distributed Systems: Concepts and Design, Pearson Education Asia, 5<sup>th</sup> Edition.
- 2. Tanenbaum Andrew S. and Steen Maarten Van, Distributed Systems: Principles and Paradigms, 2<sup>nd</sup> Edition.
- 3. Toby Velte, Anthony Velte, Robert Elsenpeter, "Cloud Computing, A Practical Approach", TMH.
- 4. Ronald L. Krutz, Russell Dean Vines, "Cloud Security A comprehensive Guide to Secure Cloud Computing", Wiley India.
- 5. M.N Rao, Cloud Computing, First Edition, PHI.
- 6. Das Gupta, Cloud Computing Based Projects using distributed Architecture, PHI.
- 7. Kai Hwang, Geoffrey C Fox, Jack G Dongarra, "Distributed and Cloud Computing, From Parallel Processing to the Internet of Things", Morgan Kaufmann Publishers.
- 8. Michael Miller, Cloud Computing: Web-Based Applications That Change the Way You Work and Collaborate Online, Que Publishing, Augus.
- 9. Tom White, Hadoop: The Definitive Guide, OReilly Media.

| Approval Date       |  |
|---------------------|--|
| Version             |  |
| Approval by         |  |
| Implementation Date |  |



#### CO M 21 C 31 THEORETICAL COMPUTER SCIENCE

## **THIRD SEMESTER**

| School Name                                 | School of Cor                                                                                                                                                                                                                                                                                                                                                                                                                                      | nputer Sc                                            | iences       |           |        |                            |  |
|---------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|--------------|-----------|--------|----------------------------|--|
| Programme                                   | M.Sc.                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                      |              |           |        |                            |  |
| Course Name                                 | Theoretical Co                                                                                                                                                                                                                                                                                                                                                                                                                                     | Theoretical Computer Science                         |              |           |        |                            |  |
| Type of Course                              | Core                                                                                                                                                                                                                                                                                                                                                                                                                                               | Core                                                 |              |           |        |                            |  |
| Course Code                                 | CO M 21 C 3                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                    |              |           |        |                            |  |
| Names of Academic<br>Staff & Qualifications | Ms. Jissy Liz                                                                                                                                                                                                                                                                                                                                                                                                                                      | Jose, M.T                                            | ech          |           |        |                            |  |
| Course Summary & Justification              | The course provides an insight into the foundations of automata theory through a set of abstract machines that serve as models for computation- finite automata, pushdown automata, and Turing machines and examines the relationship between these automata and formal languages. This has applications in circuit design, compiler design, search algorithms, cryptography and optimization problems in manufacturing, business, and management. |                                                      |              |           |        |                            |  |
| Semester                                    | III                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      |              |           |        |                            |  |
| Total<br>StudentLearningTim<br>e (SLT)      | Learning<br>Approach                                                                                                                                                                                                                                                                                                                                                                                                                               | Lectur<br>e                                          | Tutoria<br>1 | Practical | Others | Total<br>Learning<br>Hours |  |
|                                             | Explicit Teaching 42 28  Seminar, Assignments etc. 38                                                                                                                                                                                                                                                                                                                                                                                              |                                                      |              |           |        |                            |  |
| Pre-requisite                               | Discrete Math                                                                                                                                                                                                                                                                                                                                                                                                                                      | Discrete Mathematics, Data Structures and Algorithms |              |           |        |                            |  |



#### CO M 21 C 31 THEORETICAL COMPUTER SCIENCE

## **COURSE OUTCOMES (CO)**

| CO        | <b>Expected Course Outcome</b>                           | Learning       | PSO No. |  |  |
|-----------|----------------------------------------------------------|----------------|---------|--|--|
| No.       |                                                          | Domains        |         |  |  |
| 1         | Formalize the notion of computation using "abstract      | U, An,A        | 1,2,3   |  |  |
|           | computing devices" called automata                       |                |         |  |  |
| 2         | Understand the hierarchy of classes of automata: finite  | U,An           | 2,3,10  |  |  |
|           | automata, pushdown automata, linear bounded automata,    |                |         |  |  |
|           | and Turing machines                                      |                |         |  |  |
| 3         | Formalize the notion of problems via formal languages    | U,A,An,E       | 1,2,3,8 |  |  |
|           | and classify them into regular, context-free, context    |                |         |  |  |
|           | sensitive and unrestricted languages.                    |                |         |  |  |
| 4         | Design finite state automata, regular grammar and        | A,An, C        | 1,2,3   |  |  |
|           | regular expression for regular languages.                |                |         |  |  |
| 5         | Design push-down automata and context-free grammar       | A,An,,C        | 1,2,3   |  |  |
|           | representations for context-free languages.              |                |         |  |  |
| 6         | Design Turing Machines for accepting recursively         | A,An,,C        | 1,2,3   |  |  |
|           | enumerable languages                                     |                |         |  |  |
| 7         | Understand the concepts of undecidability, intractable   | U,E            | 2,8     |  |  |
|           | problems, DNA computing and membrane computing.          |                |         |  |  |
| *Reme     | mber (R), Understand (U), Apply (A), Analyse (An), Evalu | uate (E), Crea | te (C), |  |  |
| arter (a) |                                                          |                |         |  |  |

## Skill (S)

## **COURSE CONTENT Content for Classroom transaction (Sub-units)**

| Unit    | Course description                                                                                                                                                                                                                                                                                         | Hrs | CO No. |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------|
|         | Finite Automata: The central concept of Automata                                                                                                                                                                                                                                                           |     |        |
| UNIT I  | Theory, Introduction to Finite Automata, Deterministic Finite Automata, Nondeterministic Finite Automata, Finite Automata with $\epsilon$ -Transitions                                                                                                                                                     | 14  | 1      |
| UNIT II | Regular Expressions and Languages: Regular Expressions, Finite Automata and Regular Expressions, Applications of Regular Expressions, Algebraic Laws for Regular Expressions.  Properties of Regular Languages: The Pumping Lemma for Regular Languages, Closure properties of Regular Languages, Decision | 16  | 2      |



#### CO M 21 C 31 THEORETICAL COMPUTER SCIENCE

|          | Properties of Regular Languages, Equivalence and Minimization of Automata.                                                                                                                                               |    |         |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|---------|
| UNIT III | Context-Free Grammars and Languages: Context-Free Grammars, Parse Trees, Applications of Context-Free Grammars, Ambiguity in Grammars and Languages.                                                                     | 14 | 2,3,4   |
| UNIT IV  | Properties of Context Free Languages: Normal Forms for Context Free Grammars, The Pumping Lemma for Context-Free Languages, Closure Properties of Context-Free Languages, Decision Properties of Context-Free Languages. | 14 | 2,3,4,5 |
| UNIT V   | Turing Machines: The Turing Machine, Programming Techniques for Turing Machines, Turing Machines and Computers. Introduction to: Undecidability, Intractable Problems, DNA Computing, Membrane Computing.                | 12 | 2,3.6,7 |

| Teaching and | Classroom Procedure (Mode of transaction)                              |  |  |  |  |  |  |  |
|--------------|------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Learning     | Direct Instruction: Explicit Teaching, E-learning                      |  |  |  |  |  |  |  |
| Approach     | Interactive Instruction: Active co-operative learning, Seminar, Group  |  |  |  |  |  |  |  |
|              | Assignments                                                            |  |  |  |  |  |  |  |
|              | Authentic learning: Library work and Group discussion, Presentation by |  |  |  |  |  |  |  |
|              | individual student/Group representative.                               |  |  |  |  |  |  |  |
|              |                                                                        |  |  |  |  |  |  |  |
| Assessment   | Mode of Assessment                                                     |  |  |  |  |  |  |  |
| Types        | A. Continuous Internal Assessment (CIA)                                |  |  |  |  |  |  |  |
|              | <ul> <li>Internal Tests – Minimum two (Extended answers)</li> </ul>    |  |  |  |  |  |  |  |
|              | Seminar –                                                              |  |  |  |  |  |  |  |
|              | <ul> <li>Research Literature review</li> </ul>                         |  |  |  |  |  |  |  |
|              | <ul> <li>Report writing</li> </ul>                                     |  |  |  |  |  |  |  |
|              | <ul> <li>Presentation</li> </ul>                                       |  |  |  |  |  |  |  |
|              | <ul> <li>Assignments – Written, Oral presentation and viva.</li> </ul> |  |  |  |  |  |  |  |
|              | Case study                                                             |  |  |  |  |  |  |  |
|              |                                                                        |  |  |  |  |  |  |  |
|              | B. Semester End Examination                                            |  |  |  |  |  |  |  |



#### CO M 21 C 31 THEORETICAL COMPUTER SCIENCE

- 1. John E. Hopcroft, Rajeev Motwani, Jeffrey D. Ullman, Introduction to Automata Theory, Languages and Computation, Pearson, 3rd Edition.
- 2. Peter Linz, An Introduction to Formal Language and Automata, Jones and Bartlett Publishers, 6th Edition.
- 3. Kamala Krithivasan, Rama R., Introduction to Formal Languages, Automata Theory and Computation, Pearson.
- 4. John C. Martin, Introduction to the Languages and the Theory of Computation, Tata McGrawHill, 3rd Edition.
- 5. M.Sipser, Introduction to the Theory of Computation, Singapore: Brooks/Cole, Thomson Learning, 3rd Edition.

| Approval Date       |  |
|---------------------|--|
| Version             |  |
| Approval by         |  |
| Implementation Date |  |



#### CO M 21 C 32 DEEP LEARNING

| SchoolName                                     | School of Compu                                                                                                                                                                                                                                                                                                                                                                                                                                                  | iter Scienc     | ces            |               |        |                            |
|------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|----------------|---------------|--------|----------------------------|
| Programme                                      | M.Sc.                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 |                |               |        |                            |
| Course Name                                    | Deep Learning                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 |                |               |        |                            |
| Type of Course                                 | Core                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 |                |               |        |                            |
| Course Code                                    | CO M 21 C 32                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |                |               |        |                            |
| Names of<br>Academic Staff<br>& Qualifications | Prof. (Dr.) Anuj                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Mohamed,        | Ph D           |               |        |                            |
| Course<br>Summary &<br>Justification           | This course aims to provide foundations of machine learning and deep learning, including the ability to successfully implement, apply and test relevant learning algorithms. The students will also get acquainted with the design and implementation of efficient algorithms to solve various real-life applications ranging from speech and natural language processing to machine vision and medical imaging by applying advanced deep learning technologies. |                 |                |               |        |                            |
| Semester                                       | III                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |                |               |        |                            |
| Total Student<br>Learning Time<br>(SLT)        | Learning<br>Approach                                                                                                                                                                                                                                                                                                                                                                                                                                             | Lecture         | Tutoria<br>1   | Pract<br>ical | Others | Total<br>Learning<br>Hours |
|                                                | Explicit Teaching Assignments, Seminar etc.                                                                                                                                                                                                                                                                                                                                                                                                                      | 42              | 28             | 14            | 36     | 120                        |
| Pre-requisite                                  | Machine Learning                                                                                                                                                                                                                                                                                                                                                                                                                                                 | l<br>g & Neural | <br>  Networks | 3             |        |                            |



#### CO M 21 C 32 DEEP LEARNING

## **COURSE OUTCOMES (CO)**

| CO  | <b>Expected Course Outcome</b>                                                                                                                                                         | Learning         | PSO No.             |  |  |  |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------------------|--|--|--|
| No. |                                                                                                                                                                                        | Domains          |                     |  |  |  |
| 1   | Understand the concept of machine learning and its applications.                                                                                                                       | U, A             | 1,3                 |  |  |  |
| 2   | Understand and apply gradient-descent techniques to train deep neural networks.                                                                                                        | U,An,A,E         | 1,2,3,8             |  |  |  |
| 3   | Understand and apply generalization strategies                                                                                                                                         | U, An, A         | 1,2,3               |  |  |  |
| 4   | Understand and apply various Optimization techniques for training deep models                                                                                                          | U, An, A         | 1,2,3               |  |  |  |
| 5   | Construct and train convolutional and recurrent neural networks.                                                                                                                       | U,An,A,E         | 1,2,3,8             |  |  |  |
| 6   | Understand the apply the concept of Auto encoders and Long Short Term Memory                                                                                                           | U, An, A         | 1,2,3               |  |  |  |
| 7   | Investigate Advanced Deep Learning Models and Applications                                                                                                                             | U, A, An,<br>C,E | 1,2,3,5,8,1         |  |  |  |
| 8   | Design and implement efficient algorithms to solve various real-life problems by applying deep neural network concepts and presenting the approach effectively with appropriate tools. | U, A, An,<br>C,E | 1,2,3,5,8           |  |  |  |
| 9   | Acquire knowledge and skills through self-paced and self-directed learning and adapt to changing trends through knowledge/skill updation/reskilling.                                   |                  | 1,2,3,5,7,<br>8, 10 |  |  |  |
|     | *Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S)                                                                                            |                  |                     |  |  |  |

# **COURSE CONTENT Content for Classroom transaction (Sub-units)**

| Unit   | Course description                                                                                                                                                                                                                                                                                                                                                                                                  | Hrs | CO No. |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------|
|        |                                                                                                                                                                                                                                                                                                                                                                                                                     |     |        |
| UNIT I | Machine Learning Review: Concept, Applications and Key Elements of Machine Learning, Machine Learning Fundamentals - Binary Classification, Regression, Generalization, Regularization. Learning Algorithms, Capacity, Overfitting and Underfitting, Hyper Parameters and Validation Sets, Estimator, Bias and Variance, Maximum Likelihood Estimation, Bayesian Statistics, Building a Machine Learning Algorithm. | 20  | 1      |



#### CO M 21 C 32 DEEP LEARNING

| UNIT II  | Training Deep Neural Networks: Introduction, Back Propagation, Setup and Initialization Issues, The Vanishing and Exploding Gradient Problems, Gradient -Descent Strategies, Batch Normalization. Teaching Deep Learners to Generalize: Introduction, The Bias-Variance Trade-off, Generalization Issues in Model Tuning and Evaluation, Penalty-based Regularization, Ensemble Methods, Early Stopping, Unsupervised Pretraining, Continuation and Curriculum Learning, Parameter Sharing | 22 | 2,3     |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|---------|
| UNIT III | Optimization for Training Deep Models: Challenges in Neural Network Optimization, Basic Algorithms: SGD and Momentum, Parameter Initialization Strategies, Adaptive Learning Rates: RMSProp, Adam. Approximate Second Order Methods: Newton, BFGS, Optimization Strategies and Meta-Algorithms, Batch Normalization, Coordinate Descent, Pretraining.                                                                                                                                      | 22 | 4,8,9   |
| UNIT IV  | Convolutional Neural Networks: Convolution Operation, Pooling Operation, Convolution-Detector-Pooling Building Block, Convolution Variants, Intuition Neural Networks.Recurrent Neural Networks: RNN Basics, Training RNNs, Bidirectional RNNs, Encoder-Decoder Architecture, Gradient Explosion and Vanishing, Gradient Clipping, Auto encoders, Long Short Term Memory                                                                                                                   | 24 | 5,6,8,9 |
| UNIT V   | Advanced Deep Learning Models and Applications: Image Processing, Natural Language Processing, Speech Recognition, Video Analytics.                                                                                                                                                                                                                                                                                                                                                        | 24 | 7,8,9   |



#### CO M 21 C 32 DEEP LEARNING

| Teaching and<br>Learning<br>Approach | Classroom Procedure (Mode of transaction) Explicit Teaching, E-learning, Active co-operative learning, Inquiry-based instruction, Authentic learning, Library work and Group discussions |
|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Assessment                           | Mode of Assessment                                                                                                                                                                       |
| Types                                | A. Continuous Internal Assessment (CIA)                                                                                                                                                  |
|                                      | Technical skills evaluation - Correctness of programs                                                                                                                                    |
|                                      | Internal Tests – Minimum two (Practical)                                                                                                                                                 |
|                                      | Assignments -Lab Records, Practical and Viva                                                                                                                                             |
|                                      | Case study                                                                                                                                                                               |
|                                      | B. Semester End Examination                                                                                                                                                              |

- 1. Ian Goodfellow Yoshua Bengio Aaron Courville, Deep Learning, The MIT Press.
- 2. Charu C. Aggarwal, Neural Networks and Deep Learning, Springer.
- 3. Nikhil Ketkar, Deep Learning with Python: A Hands-on Introduction, Apress.
- 4. Li Deng, Dong Yu, Deep Learning: Methods and Applications, Foundations and Trends in Signal Processing, Vol. 7, Nos. 3–4.
- 5. Sandro Skansi, "Introduction to Deep Learning from Logical calculus to Artificial Intelligence", Springer.
- 6. EthemAlpaydin, "Introduction to Machine Learning", 4<sup>th</sup> Edition, The MIT Press.
- 7. Tom M. Mitchell, "Machine Learning", 1st Edition, Tata McGraw-Hill Education.
- 8. Christopher M. Bishop, "Pattern Recognition and Machine Learning".
- 9. Kevin P. Murphy, "Machine Learning: A Probabilistic Perspective", The MIT Press.
- 10. Kevin P. Murphy, "Machine Learning, 2<sup>nd</sup> Edition, The MIT Press.
- 11. Yegnanarayana B, Artificial Neural Networks, Prentice-Hall India Pvt. Ltd.
- 12. "Mastering Machine Learning: A Step-by-Step Guide with MATLAB", MathWorks.
- 13. Giuseppe Ciaburro, "MATLAB for Machine Learning", Packt Publishing Limited.
- 14. U Dinesh Kumar, Manaranjan Pradhan, "Machine Learning using Python", Wiley.

| Approval Date       |  |
|---------------------|--|
| Version             |  |
| Approval by         |  |
| Implementation Date |  |



#### CO M 21 C 33 DEEP LEARNING -LAB

| SchoolName                                     | School of Compu                                                                                                                         | iter Scienc                                                          | ces                                                  |                                                 |                                                    |                                                                    |
|------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------|-------------------------------------------------|----------------------------------------------------|--------------------------------------------------------------------|
| Programme                                      | M.Sc.                                                                                                                                   |                                                                      |                                                      |                                                 |                                                    |                                                                    |
| Course Name                                    | Deep Learning – l                                                                                                                       | LAB                                                                  |                                                      |                                                 |                                                    |                                                                    |
| Type of Course                                 | Core                                                                                                                                    |                                                                      |                                                      |                                                 |                                                    |                                                                    |
| Course Code                                    | CO M 21 C 33                                                                                                                            |                                                                      |                                                      |                                                 |                                                    |                                                                    |
| Names of<br>Academic Staff<br>& Qualifications | Prof. (Dr.) Anuj l                                                                                                                      | Mohamed,                                                             | Ph D                                                 |                                                 |                                                    |                                                                    |
| Course<br>Summary &<br>Justification           | This course aims learning, including relevant learning the design and impreal-life applicate processing to mac deep learning technique. | g the abilit<br>algorithms<br>aplementat<br>ions rang<br>hine vision | y to succe<br>. The stud-<br>ion of effi<br>ing from | ssfully ir<br>ents will<br>cient algo<br>speech | nplement,<br>also get ac<br>orithms to<br>and natu | apply and test<br>equainted with<br>solve various<br>iral language |
| Semester                                       | III                                                                                                                                     |                                                                      |                                                      |                                                 |                                                    |                                                                    |
| Total Student<br>Learning Time<br>(SLT)        | Learning<br>Approach                                                                                                                    | Lecture                                                              | Tutoria<br>1                                         | Pract ical                                      | Others                                             | Total<br>Learning<br>Hours                                         |
|                                                | Explicit<br>Teaching                                                                                                                    |                                                                      | 14                                                   | 84                                              |                                                    |                                                                    |
|                                                | Assignments,<br>Seminar etc.                                                                                                            |                                                                      |                                                      |                                                 | 22                                                 | 120                                                                |
| Pre-requisite                                  | Machine Learning                                                                                                                        | g & Neural                                                           | Networks                                             | 5                                               | 1                                                  | 1                                                                  |



#### CO M 21 C 33 DEEP LEARNING -LAB

## **COURSE OUTCOMES (CO)**

| CO<br>No.       | <b>Expected Course Outcome</b>                                                                                                                                                         | Learning Domains  | PSO No.             |
|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------------------|
| 1               | Understand the concept of machine learning and its applications.                                                                                                                       | U, A              | 1,3                 |
| 2               | Understand and apply gradient-descent techniques to train deep neural networks.                                                                                                        | U,An,A,E          | 1,2,3,8             |
| 3               | Understand and apply generalization strategies                                                                                                                                         | U, An, A          | 1,2,3               |
| 4               | Understand and apply various Optimization techniques for training deep models                                                                                                          | U, An, A          | 1,2,3               |
| 5               | Construct and train convolutional and recurrent neural networks.                                                                                                                       | U,An,A,E          | 1,2,3,8             |
| 6               | Understand the apply the concept of Auto encoders and Long Short Term Memory                                                                                                           | U, An, A          | 1,2,3               |
| 7               | Investigate Advanced Deep Learning Models and Applications                                                                                                                             | U, A, An,<br>C,E  | 1,2,3,5,8,1         |
| 8               | Design and implement efficient algorithms to solve various real-life problems by applying deep neural network concepts and presenting the approach effectively with appropriate tools. | U, A, An,<br>C,E  | 1,2,3,5,8           |
| 9               | Acquire knowledge and skills through self-paced and self-directed learning and adapt to changing trends through knowledge/skill updation/reskilling.                                   | U, An, A,<br>C, E | 1,2,3,5,7,<br>8, 10 |
| *Rem<br>Skill ( | ember (R), Understand (U), Apply (A), Analyse (An), Eva<br>S)                                                                                                                          | luate (E), Cr     | eate (C),           |

# COURSE CONTENT Content for Classroom transaction (Sub-units)

| Machine Learning Review: Concept, Applications and Key Elements of Machine Learning, Machine Learning Fundamentals - Binary Classification, Regression, Generalization, Regularization.Learning Algorithms, Capacity, Overfitting and Underfitting, Hyper Parameters and Validation Sets, Estimator, Bias and Variance, Maximum Likelihood Estimation, Bayesian Statistics, | Unit | Course description                                                                                                                                                                                                                                                                                                                                                          | Hrs | CO No. |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------|
| Building a Machine Learning Algorithm.                                                                                                                                                                                                                                                                                                                                      |      | Machine Learning Review: Concept, Applications and Key Elements of Machine Learning, Machine Learning Fundamentals - Binary Classification, Regression, Generalization, Regularization.Learning Algorithms, Capacity, Overfitting and Underfitting, Hyper Parameters and Validation Sets, Estimator, Bias and Variance, Maximum Likelihood Estimation, Bayesian Statistics, |     | 1      |



#### CO M 21 C 33 DEEP LEARNING -LAB

| UNIT II  | Training Deep Neural Networks: Introduction, Back Propagation, Setup and Initialization Issues, The Vanishing and Exploding Gradient Problems, Gradient -Descent Strategies, Batch Normalization. Teaching Deep Learners to Generalize: Introduction, The Bias-Variance Trade-off, Generalization Issues in Model Tuning and Evaluation, Penalty-based Regularization, Ensemble Methods, Early Stopping, Unsupervised Pretraining, Continuation and Curriculum Learning, Parameter Sharing | 22 | 2,3     |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|---------|
| UNIT III | Optimization for Training Deep Models: Challenges in Neural Network Optimization, Basic Algorithms: SGD and Momentum, Parameter Initialization Strategies, Adaptive Learning Rates: RMSProp, Adam. Approximate Second Order Methods: Newton, BFGS, Optimization Strategies and Meta-Algorithms, Batch Normalization, Coordinate Descent, Pretraining.                                                                                                                                      | 22 | 4,8,9   |
| UNIT IV  | Convolutional Neural Networks: Convolution Operation, Pooling Operation, Convolution-Detector-Pooling Building Block, Convolution Variants, Intuition Neural Networks.Recurrent Neural Networks: RNN Basics, Training RNNs, Bidirectional RNNs, Encoder-Decoder Architecture, Gradient Explosion and Vanishing, Gradient Clipping, Auto encoders, Long Short Term Memory.                                                                                                                  | 24 | 5,6,8,9 |
| UNIT V   | Advanced Deep Learning Models and Applications: Image Processing, Natural Language Processing, Speech Recognition, Video Analytics.                                                                                                                                                                                                                                                                                                                                                        | 24 | 7,8,9   |

| Teaching and | Classroom Procedure (Mode of transaction)                                  |
|--------------|----------------------------------------------------------------------------|
| Learning     | Explicit Teaching, E-learning, Active co-operative learning, Inquiry-based |
| Approach     | instruction, Authentic learning, Library work and Group discussions        |
| Assessment   | Mode of Assessment                                                         |
| Types        | A. Continuous Internal Assessment (CIA)                                    |
|              | <ul> <li>Technical skills evaluation - Correctness of programs</li> </ul>  |
|              | <ul> <li>Internal Tests – Minimum two (Practical)</li> </ul>               |



#### CO M 21 C 33 DEEP LEARNING -LAB

- Assignments -Lab Records, Practical and Viva
- Case study
- **B. Semester End Examination**

- 1. Ian Goodfellow Yoshua Bengio Aaron Courville, Deep Learning, The MIT Press.
- **2.** Charu C. Aggarwal, Neural Networks and Deep Learning, Springer.
- **3.** Nikhil Ketkar, Deep Learning with Python: A Hands-on Introduction, Apress.
- **4.** Li Deng, Dong Yu, Deep Learning: Methods and Applications, Foundations and Trends in Signal Processing, Vol. 7, Nos. 3–4.
- **5.** Sandro Skansi, "Introduction to Deep Learning from Logical calculus to Artificial Intelligence", Springer.
- **6.** Ethem Alpaydin, "Introduction to Machine Learning", 4<sup>th</sup> Edition, The MIT Press.
- 7. Tom M. Mitchell, "Machine Learning", 1<sup>st</sup> Edition, Tata McGraw-Hill Education.
- **8.** Christopher M. Bishop, "Pattern Recognition and Machine Learning".
- **9.** Kevin P. Murphy, "Machine Learning: A Probabilistic Perspective", The MIT Press.
- **10.** Kevin P. Murphy, "Machine Learning, 2<sup>nd</sup> Edition, The MIT Press.
- 11. Yegnanarayana B, Artificial Neural Networks, Prentice-Hall India Pvt. Ltd.
- **12.** "Mastering Machine Learning: A Step-by-Step Guide with MATLAB", MathWorks.
- 13. Giuseppe Ciaburro, "MATLAB for Machine Learning", Packt Publishing Limited.
- **14.** U Dinesh Kumar, Manaranjan Pradhan, "Machine Learning using Python", Wiley.

| Approval Date       |  |
|---------------------|--|
| Version             |  |
| Approval by         |  |
| Implementation Date |  |



## CO M 21 C 34 ADVANCED SOFTWARE DEVELOPMENT TOOLS –LAB

| SchoolName                                     | School of Compu                                                                                                                                 | iter Scien                                              | ces                                                     |                                        |                                                              |                                                                               |
|------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|----------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------------------------|
| Programme                                      | M.Sc.                                                                                                                                           |                                                         |                                                         |                                        |                                                              |                                                                               |
| Course Name                                    | Advanced Softwa                                                                                                                                 | are Develo                                              | opment To                                               | ools –La                               | b                                                            |                                                                               |
| Type of Course                                 | Core                                                                                                                                            |                                                         |                                                         |                                        |                                                              |                                                                               |
| <b>Course Code</b>                             | CO M 21 C 34                                                                                                                                    |                                                         |                                                         |                                        |                                                              |                                                                               |
| Names of<br>Academic Staff<br>& Qualifications | Dr. Ivy Prathap P                                                                                                                               | h.D.                                                    |                                                         |                                        |                                                              |                                                                               |
| Course<br>Summary &<br>Justification           | This course provide Python libraries a important in today knowledge on the knowledge on he Hadoop installate commands and satthe Hadoop system. | nd Python y's comme ne Big Da ow to imp ion in mple Map | for Data Sercial lands<br>ta conceptlement baddifferent | Science. scape. The sic data operating | Big data in this course this course structure general modes, | s increasingly<br>gives the best<br>imparts the<br>programs and<br>run Hadoop |
| Semester                                       | II                                                                                                                                              |                                                         |                                                         |                                        |                                                              |                                                                               |
| Total Student<br>Learning Time<br>(SLT)        | Learning<br>Approach                                                                                                                            | Lecture                                                 | Tutoria<br>1                                            | Pract ical                             | Others                                                       | Total<br>Learning<br>Hours                                                    |
|                                                | Explicit Teaching Assignments, Viva, Record Preparation etc.                                                                                    | -                                                       | 14                                                      | 42                                     | 64                                                           | 120                                                                           |
| Pre-requisite                                  | Basic Python                                                                                                                                    | ı                                                       | ı                                                       | 1                                      | 1                                                            | 1                                                                             |



## CO M 21 C 34 ADVANCED SOFTWARE DEVELOPMENT TOOLS –LAB

## **COURSE OUTCOMES (CO)**

| Trite, test and debug Python programs using object- riented concepts  amiliarize with Python libraries pply Python for Data science | A<br>U<br>A                                                                                                              | 1,2,3<br>1,2,3<br>1,2,3,4,7                                                        |
|-------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| •                                                                                                                                   |                                                                                                                          | 1,2,3,4,7                                                                          |
| pply Python for Data science                                                                                                        | A                                                                                                                        |                                                                                    |
|                                                                                                                                     |                                                                                                                          | 10                                                                                 |
| lustrate learning of data from Python                                                                                               | A                                                                                                                        | 1,2,3,4                                                                            |
| nderstand the installation of Hadoop                                                                                                | U                                                                                                                        | 1,2,3,4,7,1                                                                        |
| terpret the concepts of Hadoop cluster                                                                                              | Е                                                                                                                        | 1,2,3,4,7,1                                                                        |
| pply Hadoop to manage mining of huge data sets                                                                                      | A                                                                                                                        | 1,2,3,4,<br>7,10                                                                   |
| r                                                                                                                                   | derstand the installation of Hadoop erpret the concepts of Hadoop cluster oply Hadoop to manage mining of huge data sets | nderstand the installation of Hadoop  U  Terpret the concepts of Hadoop cluster  E |

# COURSE CONTENT Content for Classroom transaction (Sub-units)

| Unit    | Course description                                                                                                                                                                                                                                                                                                                  | Hrs | CO No. |
|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------|
| UNIT I  | Advanced Python: Object Oriented, OOPs concept, Class and object, Attributes, Inheritance, Overloading, Overriding, Data hiding, Operations Exception, Exception Handling, Except clause, Try - finally clause, User Defined Exceptions, Python Libraries. Introduction to Machine learning packages like NUMPY, SCIPY, PANDAS etc. | 12  | 1,2    |
| UNIT II | Python for Data Science: Pre-Processing of Data, Visualizing the Data, Exploratory Data Analysis, Clustering and identification of Outliers using Python, Performing Cross-Validation, Selection, and Optimization using Python, Learning from Data using Python                                                                    | 12  | 3,4    |



## CO M 21 C 34 ADVANCED SOFTWARE DEVELOPMENT TOOLS –LAB

| UNIT III | Introduction to Big Data and Hadoop Ecosystem: Install, configure and run Hadoop and HDFS, HDFS JAVA API, Map reduce, Hadoop ETL, Hadoop Reporting Tools. | 11 | 5   |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----|
| UNIT IV  | Hadoop Environment: Setting up Hadoop<br>Cluster and HDFS Monitoring, Pig and HIVE,<br>Apache Spark                                                       | 11 | 6   |
| UNIT V   | Security in Hadoop, Administering Hadoop, HDFS- Monitoring & Maintenance, Hadoop benchmarks, Hadoop in the cloud.                                         | 10 | 7,8 |

| Teaching and<br>Learning<br>Approach | Classroom Procedure (Mode of transaction) Explicit Teaching, E-learning, Active co-operative learning, Inquiry-based instruction, Authentic learning, Library work and Group discussions                                           |  |  |  |  |  |
|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Assessment<br>Types                  | Mode of Assessment  A. Continuous Internal Assessment (CIA)                                                                                                                                                                        |  |  |  |  |  |
|                                      | <ul> <li>Technical skills evaluation - Correctness of programs</li> <li>Internal Tests - Minimum two (Practical)</li> <li>Assignments - Lab Records, Practical and Viva</li> <li>Case study</li> </ul> B. Semester End Examination |  |  |  |  |  |

- 1. Ashok Namdev Kamthane and Amit Ashok Kamthane, Programming and
- 2. ProblemSolving with Python, McGraw-Hill Education.
- 3. Irv Kalb, Learn to Program with Python, Apress.
- 4. Deepak Vohra, Practical Hadoop Ecosystem: A Definitive Guide to Hadoop-Related
- 5. Frameworks and Tools, Apress.
- 6. Mayank Bhushan, Big Data and Hadoop: Learn by Example, BPB Publications.



## CO M 21 C 34 ADVANCED SOFTWARE DEVELOPMENT TOOLS –LAB

| Approval Date       |  |
|---------------------|--|
|                     |  |
| Version             |  |
|                     |  |
| Approval by         |  |
|                     |  |
| Implementation Date |  |
|                     |  |



#### CO M 21 E 31 DATA SCIENCE

## **ELECTIVES**

| School Name                                 | School of Cor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | nputer Sci | iences   |              |             |          |  |  |
|---------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------|--------------|-------------|----------|--|--|
| Programme                                   | M.Sc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |          |              |             |          |  |  |
| Course Name                                 | Data Science                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |          |              |             |          |  |  |
| Type of Course                              | Elective                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Elective   |          |              |             |          |  |  |
| Course Code                                 | CO M 21 E 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1          |          |              |             |          |  |  |
| Names of Academic<br>Staff & Qualifications | Ms. Jissy Liz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Jose, M. 7 | Tech     |              |             |          |  |  |
| Course Summary & Justification              | The course provides an insight into the data science process, statistical and machine learning techniques used in data science projects and delivering results. Data Science has emerged as a new, exciting, and fast-paced discipline that explores novel statistical, algorithmic, and implementation challenges that emerge in processing, storing, and extracting knowledge from Big Data. Data Science is widely used in various industry domains, including marketing, healthcare, finance, banking, policy work, and more. |            |          |              |             |          |  |  |
| Semester                                    | III                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |          |              |             |          |  |  |
| Total<br>StudentLearningTim<br>e (SLT)      | Learning Approach e Tutoria Practical Others Total Learning Hours                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |          |              |             |          |  |  |
|                                             | Explicit Teaching 42 14 28  Seminar, Assignments etc. 14 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |          |              |             |          |  |  |
| Pre-requisite                               | Basics of Alg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | gorithms,  | Programm | ing, and Sta | atistical a | nalysis. |  |  |



#### CO M 21 E 31 DATA SCIENCE

#### **COURSE OUTCOMES (CO)**

| CO  | <b>Expected Course Outcome</b>                                                                                       | Learning | PSO No.    |  |  |  |
|-----|----------------------------------------------------------------------------------------------------------------------|----------|------------|--|--|--|
| No. |                                                                                                                      | Domains  |            |  |  |  |
| 1   | Understand the significance of data science and its key functionalities                                              | U        | 2,10       |  |  |  |
| 2   | Analyse the characteristics of dataset and illustrate how to load, manage, and explore data.                         | U, An, A | 1.2,3,10   |  |  |  |
| 3   | Choose and evaluate classification models, scoring models, probability models, ranking models and clustering models. | Е        | 1,2,3,10   |  |  |  |
| 4   | Compare and apply various single variable and multivariable models suitable for data science.                        | An, A    | 1,2,3,10   |  |  |  |
| 5   | Perform preliminary statistical analysis, prediction and filtering on simple data sets using Python or R.            | A, S, C  | 1,2,3.8,10 |  |  |  |
| 6   | Choose techniques for effective visualization and presentation of data.                                              | An, A    | 1,2,3,10   |  |  |  |
| 7   | Perform Hadoop and Map-Reduce for data analysis.                                                                     | An, A, C | 1,2,3,10   |  |  |  |
|     | *Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S)                          |          |            |  |  |  |

# COURSE CONTENT

**Content for Classroom transaction (Sub-units)** 

| Unit    | Course description                                                                                                                                                                                                                                                                                                                                                                                                          | Hrs | CO No. |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------|
| UNIT I  | Introduction to data science - Data science process, Roles in a data science project, Stages of a data science project, Applications of data science, setting expectations - Determining lower and upper bounds on model performance, Loading data - Working with data from files, Working with relational databases, Applications of data science.                                                                         | 17  | 1      |
| UNIT II | Exploring data - Using summary statistics to spot problems, Spotting problems using graphics and visualization, Managing data - cleaning data, Sampling for modelling and validation. Choosing and evaluating models - Mapping problems to machine learning tasks, Evaluating classification models, scoring models, probability models, ranking models and clustering models. Validating models - Identifying common model | 18  | 2,3    |



#### CO M 21 E 31 DATA SCIENCE

|          | problems, quantifying model soundness, Ensuring model quality, Case Studies.                                                                                                                                                                                            |    |     |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----|
| UNIT III | Single variable and multivariable models, Linear and logistic regression, unsupervised methods, Bagging, and random forests, Generalized additive models, kernel methods to increase data separation, Support vector machines.                                          | 17 | 4,5 |
| UNIT IV  | Delivering results - Documentation - Using comments and version control for running documentation, deploying models, producing effective presentations - Presenting results to the project sponsor, presenting model to end users and other data scientists.            | 16 | 6   |
| UNIT V   | Introduction to Big data and Distributed file system - Algorithm using Map Reduce, Understanding Map Reduce architecture, Hadoop, Writing Hadoop Map-Reduce programs, Loading data into HDFS, Executing the Map phase, Shuffling and sorting, Reducing phase execution. | 16 | 7   |

| Teaching and | Classroom Procedure (Mode of transaction)                              |  |  |  |  |  |  |  |
|--------------|------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Learning     | Direct Instruction: Explicit Teaching, E-learning                      |  |  |  |  |  |  |  |
| Approach     | Interactive Instruction: Active co-operative learning, Seminar, Group  |  |  |  |  |  |  |  |
|              | Assignments                                                            |  |  |  |  |  |  |  |
|              | Authentic learning: Library work and Group discussion, Presentation by |  |  |  |  |  |  |  |
|              | individual student/Group representative.                               |  |  |  |  |  |  |  |
| Assessment   | Mode of Assessment                                                     |  |  |  |  |  |  |  |
| Types        | A. Continuous Internal Assessment (CIA)                                |  |  |  |  |  |  |  |
|              | <ul> <li>Internal Tests – Minimum two (Extended answers)</li> </ul>    |  |  |  |  |  |  |  |
|              | Seminar –                                                              |  |  |  |  |  |  |  |
|              | <ul> <li>Research Literature review</li> </ul>                         |  |  |  |  |  |  |  |
|              | <ul> <li>Report writing</li> </ul>                                     |  |  |  |  |  |  |  |
|              | <ul> <li>Presentation</li> </ul>                                       |  |  |  |  |  |  |  |
|              | <ul> <li>Assignments – Written, Oral presentation and viva.</li> </ul> |  |  |  |  |  |  |  |
|              | • Case study                                                           |  |  |  |  |  |  |  |
|              | B. Semester End Examination                                            |  |  |  |  |  |  |  |



#### CO M 21 E 31 DATA SCIENCE

- 1. Nina Zumel, John Mount "Practical Data Science with R", Manning Publications.
- 2. Boris Lublinsky, Kevin T. Smith. Alexcy Yakubovich, "Professional Hadoop Solutions", Wiley.
- 3. Rajkumar Buyya, Rodrigo N. Calheiros, Amir Vahid Dastjerd, "Big Data Principles and Paradigms", Morgan Kaufmann.
- 4. Ervin Varga, "Practical Data Science with Python 3, Synthesizing Actionable Insights from Data".
- 5. Cathy O'Neil and Rachel Schutt, "Doing Data Science, Straight Talk from The Frontline", O'Reilly.
- 6. Jure Leskovec, Anand Rajaraman, Jeffrey D. Ullman, "Mining of Massive Datasets". Cambridge University Press.
- 7. Tony Ojeda, Sean Patrick Murphy, Benjarnin Bengfort. Abhijit Dasgupta. "Practical Data Science Cookbook", Packt Publishing Limited.

| Approval Date       |  |
|---------------------|--|
| Version             |  |
| Approval by         |  |
| Implementation Date |  |



# CO M 21 E 32 INTERNET OF THINGS AND BLOCK CHAIN TECHNOLOGIES

|                                                |                                                                                                                                                                                                                                     | ~                           | ~ .          |             |              |                            |
|------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--------------|-------------|--------------|----------------------------|
| Name of School                                 | School of C                                                                                                                                                                                                                         | School of Computer Sciences |              |             |              |                            |
| Programme                                      | M. Sc                                                                                                                                                                                                                               |                             |              |             |              |                            |
| Name of Course                                 | Internet of                                                                                                                                                                                                                         | f Things a                  | nd Block     | Chain Tech  | nologies     |                            |
| Type of Course                                 | Elective                                                                                                                                                                                                                            | _                           |              |             |              |                            |
| <b>Course Code</b>                             | CO M 21                                                                                                                                                                                                                             | E 32                        |              |             |              |                            |
| Names of<br>Academic Staff<br>& Qualifications | Dr. P. Abd                                                                                                                                                                                                                          | ul Jabbar, î                | MPhil, Phi   | D           |              |                            |
| Course<br>Summary &<br>Justification           | The course covers the theoretical concept of the design, Configure, and implementation of connected devices block chain. Areas include IOT, Connections, Smart Object, Smart environment and privacy issues of IOT and block chain. |                             |              |             |              |                            |
| Semester                                       | III                                                                                                                                                                                                                                 | T _                         | Ι            | T =         | T = -        | 1                          |
| Total Student<br>Learning Time<br>SLT          | Learning<br>Approach                                                                                                                                                                                                                | Lecture                     | Tutoria<br>1 | Practical   | Others       | Total<br>Learning<br>Hours |
| Direct Teaching  Assignments, Seminars etc.    |                                                                                                                                                                                                                                     | 42                          | 14           | 28          | 36           | 120                        |
| Pre-requisite                                  | The learner                                                                                                                                                                                                                         | r must hav                  | e gained th  | ne fundamer | ntal concept | s of software.             |

## **COURSE OUTCOMES (CO)**

| CO<br>No. | Expected Course Outcome                                                                                 | Learning<br>Domains | PSO No.    |
|-----------|---------------------------------------------------------------------------------------------------------|---------------------|------------|
| 1         | Initiation of technical dimensions of blockchain in IOT mechanism and key issues in internet of things. | A,R,U               | 1,2,10     |
| 2         | Understand and formulate Key Block chain techniques importance of security in decentralised application | C,S,E               | 3,4,5      |
| 3         | Conceptualize IOT and smart object in smart environment using various IOT environment.                  | C,A,S ,E            | 3,4,5      |
| 4         | Identify the security privacy issues in IOT and cloud environment.                                      | U,An,C,A            | 3,4,5 ,8   |
| 5         | Manage and develop secure system using IOT and Block chain.                                             | A,C,,E              | 3,4        |
| 6         | Formulate and evaluate remote controllable system.                                                      | S,C,E               | 5,6,7, 3,4 |



# CO M 21 E 32 INTERNET OF THINGS AND BLOCK CHAIN TECHNOLOGIES

| 7                                                                                 | Demonstrate the ability to analyze, design, apply and use | U,A,E,An | 5,6,7,8,9,1 |  |  |  |
|-----------------------------------------------------------------------------------|-----------------------------------------------------------|----------|-------------|--|--|--|
|                                                                                   | of various cryptography method to secure data and         |          | 0           |  |  |  |
|                                                                                   | connected device.                                         |          |             |  |  |  |
| *Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), |                                                           |          |             |  |  |  |
| Skill (S)                                                                         |                                                           |          |             |  |  |  |

# COURSE CONTENT Content for Classroom transaction (Sub-units)

| Unit     | Course description                                                                                                                                                                                                                                                                                                                                                                                                                           | Hrs | CO No. |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------|
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |        |
| UNIT I   | Introduction to Blockchain in Internet of Things, Overview, Blockchain applicationin internet of things, Security and privacy in Internet of things, Technical dimensions of blockchain, Consensus mechanism, Key issues in internet of things, Architectures of Internet of things, Evaluation metrics of internet of things.                                                                                                               | 15  | 1      |
| UNIT II  | Key Blockchain concepts, Nodes, Cryptocurrency, Tockens, Cryptography, Modern encription, Public and Private keys, Hash, Ledgers, Proof of work, Proof of stake, Hyperledger, Ripple, Unearthing Etherum, Second generation application of blockchain techniques, Smart contracts, Decentralised application.                                                                                                                                | 20  | 2      |
| UNIT III | Internet of things concepts, Smart object and smart environment, Machines to machines communication, IoT framework, Network connectivity, Sensors, Actuator, Radio frequency identification, Middleware Technologies, Data Exchange.                                                                                                                                                                                                         | 15  | 3      |
| UNIT IV  | Security and Privacy issues in internet of things; Confidentiality, Integrity, Authentication, Privacy concerns in IoT; Identity, Location, Trajectory, Blockchain in privacy preserving cloud data storage services; Technical dimension in cloud data preserving services, Basic techniques, Threat model, Data submission, Primitiveness identification, Blockchain enabled controllable data management, System initialization, Document | 20  | 4,6    |



# CO M 21 E 32 INTERNET OF THINGS AND BLOCK CHAIN TECHNOLOGIES

|        | modification, Documents Management, User registration, Voting and counting, Use case.                                                                                                                                                                                                                                                                  |    |     |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----|
| UNIT V | Quantitative analysis; Problem of interest, Programs as graph, Factors determining execution time, Execution time analysis, Security and Privacy; Cryptographic primitives, Protocol and networks security, Information flow, Identity, Blockchain Protected Identity, Blockstack, Microsoft, IBM's Trusted Identity, Blockchain and IoT, Toyota, IBM. | 14 | 5,7 |

- 1. Shiho Kim, Peng Zhang and Ganesh Chandra, Role of Rlockchain Technologies in IoT Applications, Academic Press, Elsevier.
- 2. Liehuang Zhu, Keke Gai and Meng Li, Blockchain Technology in Internet of Things, Springer International Publishing.
- 3. Qusay F. Hassan, Internet of Things A to Z; Technologies and Applications, Wiley.
- 4. Chellammal Surianarayanan, Kavita Saini, Pethuru Raj, Blockchain Technology and Applications, CRC Press.
- 5. Ahmed Banafa, Secure and Smart Internet of Things (IoT) Using Blockchain and Artificial Intelligence (AI), River Publishers.

| Classroom  | Mode of transaction                                                           |  |  |  |  |  |
|------------|-------------------------------------------------------------------------------|--|--|--|--|--|
| Procedure  | Direct Instruction: Brain storming lecture, Practical Session, Explicit       |  |  |  |  |  |
|            | Teaching, E-learning, Interactive Instruction:, Active co-operative learning, |  |  |  |  |  |
|            | Seminar, Group Assignments Authentic learning, Library work and Group         |  |  |  |  |  |
|            | discussion, Presentation by individual student/ Group representative.         |  |  |  |  |  |
| Assessment | Mode of Assessment                                                            |  |  |  |  |  |
| Types      | A. Continuous Internal Assessment (CIA)                                       |  |  |  |  |  |
|            | <b>18.</b> Internal Tests – Minimum two (Extended answers / Practical)        |  |  |  |  |  |
|            | <b>19.</b> Seminar –                                                          |  |  |  |  |  |
|            | <ul> <li>Research Literature review</li> </ul>                                |  |  |  |  |  |
|            | <ul> <li>Report writing</li> </ul>                                            |  |  |  |  |  |
|            | <ul><li>Presentation</li></ul>                                                |  |  |  |  |  |
|            | <b>20.</b> Assignments – Written, Practical, Oral presentation and viva       |  |  |  |  |  |
|            | 21. Case study/Mini project                                                   |  |  |  |  |  |
|            |                                                                               |  |  |  |  |  |
|            | B. Semester End Examination                                                   |  |  |  |  |  |



# CO M 21 E 32 INTERNET OF THINGS AND BLOCK CHAIN TECHNOLOGIES

| Approval Date       |  |
|---------------------|--|
|                     |  |
| Version             |  |
|                     |  |
| Approval by         |  |
|                     |  |
| Implementation Date |  |
|                     |  |



#### CO M 21 E 33 CLOUD COMPUTING

| Name of School                           | School of Computer                                                                                                                                                                                                               | School of Computer Sciences |          |           |        |       |  |
|------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|----------|-----------|--------|-------|--|
| Programme                                | M. Sc                                                                                                                                                                                                                            | M. Sc                       |          |           |        |       |  |
| Name of Course                           | <b>Cloud Computing</b>                                                                                                                                                                                                           | Cloud Computing             |          |           |        |       |  |
| <b>Type of Course</b>                    | Elective                                                                                                                                                                                                                         | Elective                    |          |           |        |       |  |
| <b>Course Code</b>                       | CO M 21 E 33                                                                                                                                                                                                                     |                             |          |           |        |       |  |
| Names of Academic Staff & Qualifications | Dr. Abdul Jabbar P, M Phil, PhD                                                                                                                                                                                                  |                             |          |           |        |       |  |
| Course<br>Summary &<br>Justification     | The course covers the advanced concept of the configuration, distribution and management of data and infrastructure in all services. Areas include cloud service models, security, testing, infrastructure and its configuration |                             |          |           |        |       |  |
| Semester                                 | III                                                                                                                                                                                                                              |                             |          |           |        |       |  |
| Total Student<br>Learning Time           | Learning<br>Approach                                                                                                                                                                                                             | Lecture                     | Tutorial | Practical | Others | Total |  |
| (SLT)                                    | Direct Teaching 42 14 28 Assignment, Seminars etc 36                                                                                                                                                                             |                             |          |           |        |       |  |
| Pre-requisite                            | The learner must have gained the fundamental concepts of Cloud Computing                                                                                                                                                         |                             |          |           |        |       |  |

## **COURSE OUTCOMES (CO)**

| CO  | <b>Expected Course Outcome</b>                          | Learning | PSO No.   |
|-----|---------------------------------------------------------|----------|-----------|
| No. |                                                         | Domains  |           |
| 1   | Determine the importance of Cloud Computing concept     | R,U      | 1,2,10    |
|     | in the modern computing environment.                    |          |           |
| 2   | Understand various Cloud Models and service to          | A,S,E    | 1,3,4,5   |
|     | manage the web-based applications.                      |          |           |
| 3   | Analysis and evaluate various cloud security            | An,S ,E  | 2,3,4,5   |
|     | requirements in secure development practice.            |          |           |
| 4   | Expertise in secure cloud software testing practice in  | U,A,C,   | 3,4,5     |
|     | software quality assurance.                             |          |           |
| 5   | Recognize and management of cloud computing threats     | A,C,E    | 3,4,5     |
|     | in infrastructure.                                      |          |           |
| 6   | Formulate and evaluate possible solution of the virtual | An,S,C,E | 1,3,4,5,6 |
|     | machine, and select and measure the chosen cloud        |          |           |
|     | environment.                                            |          |           |



#### CO M 21 E 33 CLOUD COMPUTING

| 7 | Demonstrate the ability to analyze, design and apply cloud infrastructure to manage data.   | E,U,R,A | 5,6,7,8,9,1<br>0 |  |  |
|---|---------------------------------------------------------------------------------------------|---------|------------------|--|--|
|   | *Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S) |         |                  |  |  |

## COURSE CONTENT

#### **Content for Classroom transaction (Sub-units)**

| Unit     | Course description                                                                                                                                                                                                                                                                                                   | Hrs | CO No. |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------|
|          |                                                                                                                                                                                                                                                                                                                      |     |        |
| UNIT I   | Cloud computing, History of Cloud Computing, Cloud service providers, Properties, Characteristics - Benefits of Cloud Computing-Cloud Storage-Cloud computing vs. Cluster computing vs. Grid computing-Role of Open Standards- Companies in the Cloud Today.                                                         | 15  | 1,4    |
| UNIT II  | Web-Based Application, Pros and Cons of Cloud<br>Service Development, The NIST model, Cloud<br>Delivery Models- SaaS, Paas, Iaas, Cloud<br>deployment models- Private cloud, public cloud,<br>community cloud, hybrid cloud, Alternative<br>Deployment Models- The Linthicum Model, The<br>Jericho Cloud Cube Model. | 20  | 2,4    |
| UNIT III | Security objectives, Services, Security design principles, secure development practice, Approaches to Cloud Software Requirements Engineering.                                                                                                                                                                       | 15  | 3,4    |
| UNIT IV  | Secure Cloud Software Testing, Testing for SQA, Conformance, functional, Performance & security testing.                                                                                                                                                                                                             | 20  | 6      |
| UNIT V   | Threats to Infrastructure, Data and Access Control, Cloud Service Provider Risks- Back-Door, Spoofing, Man-in-the-Middle, Replay threats, TCP Hijacking, Social Engineering, Dumpster Diving, Password Guessing, Trojan Horses and Malware.                                                                          | 14  | 5,7    |



#### COM 21 E 33 CLOUD COMPUTING

| Classroom  | Mode of transaction                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Procedure  | Direct Instruction: Brain storming lecture, Practical Session, Explicit Teaching, E-learning, Interactive Instruction:, Active co-operative learning, Seminar, Group Assignments Authentic learning, Library work and Group discussion, Presentation by individual student/ Group representative.                                                                 |  |  |  |  |
| Assessment | Mode of Assessment                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| Types      | <ul> <li>A. Continuous Internal Assessment (CIA)</li> <li>1. Internal Tests – Minimum two (Extended answers / Practical)</li> <li>2. Seminar –</li> <li>3. Research Literature review</li> <li>4. Report writing</li> <li>5. Presentation</li> <li>6. Assignments – Written, Practical, Oral presentation and viva</li> <li>7. Case study/Mini project</li> </ul> |  |  |  |  |
| l          | B. Semester End Examination                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |

- 1. Toby Velte, Anthony Velte, Robert Elsenpeter, "Cloud Computing, A Practical Approach", TMH.
- 2. Ronald L. Krutz, Russell Dean Vines, "Cloud Security A comprehensive Guide to Secure Cloud Computing", Wiley India.
- 3. M.N Rao, Cloud Computing, First Edition, PHI.
- 4. Das Gupta, Cloud Computing Based Projects using distributed Architecture, PHI.
- 5. Kai Hwang, Geoffrey C Fox, Jack G Dongarra, "Distributed and Cloud Computing, From Parallel Processing to the Internet of Things", Morgan Kaufmann Publishers.
- 6. Michael Miller, Cloud Computing: Web-Based Applications That Change the Way You Work and Collaborate Online, Que Publishing, Augus.

| Approval Date       |  |
|---------------------|--|
| Version             |  |
| Approval by         |  |
| Implementation Date |  |



# CO M 21 E 34 FUZZY LOGIC AND NATURE INSPIRED COMPUTING

| SchoolName             | School of Cor               | nputer Sci                                                                                               | ences        |                                               |            |           |  |
|------------------------|-----------------------------|----------------------------------------------------------------------------------------------------------|--------------|-----------------------------------------------|------------|-----------|--|
| Programme              | M.Sc.                       |                                                                                                          |              |                                               |            |           |  |
| Course Name            | Fuzzy Logic a               | Fuzzy Logic and Nature Inspired Computing                                                                |              |                                               |            |           |  |
| Type of Course         | Elective                    |                                                                                                          |              |                                               |            |           |  |
| Course Code            | CO M 21 E 3                 | CO M 21 E 34                                                                                             |              |                                               |            |           |  |
| Names of Academic      | Prof. Dr. Bind              | u V R, M                                                                                                 | . Sc., Ph. I | ).                                            |            |           |  |
| Staff & Qualifications |                             |                                                                                                          |              |                                               |            |           |  |
| Course Summary &       | The course pr               |                                                                                                          |              |                                               |            |           |  |
| Justification          | nature inspire              |                                                                                                          | 0 1          |                                               |            | ,         |  |
|                        | students will               | -                                                                                                        |              |                                               |            | -         |  |
|                        | fuzziness invo              |                                                                                                          | •            |                                               | •          | •         |  |
|                        | students will a             | _                                                                                                        | -            |                                               |            |           |  |
|                        | computing, wi               |                                                                                                          |              |                                               |            |           |  |
|                        | in nature. It concepts, dev |                                                                                                          |              |                                               |            |           |  |
|                        | practical prob              | -                                                                                                        | _            |                                               |            |           |  |
|                        | nature-inspire              |                                                                                                          | _            | _                                             |            |           |  |
|                        |                             |                                                                                                          |              |                                               |            |           |  |
|                        | _                           | Genetic Algorithms, Ant Colony Algorithms, Particle Swam algorithms and Artificial Bee Colony algorithms |              |                                               |            |           |  |
| Semester               | III                         |                                                                                                          |              | <u>, , , , , , , , , , , , , , , , , , , </u> |            |           |  |
| Total                  |                             |                                                                                                          |              |                                               |            |           |  |
| StudentLearningTim     | Learning                    | Lectur                                                                                                   | Tutoria      | Practical                                     | Others     | Total     |  |
| e (SLT)                | Approach                    | e                                                                                                        | 1            |                                               |            | Learning  |  |
|                        |                             |                                                                                                          |              |                                               |            | Hours     |  |
|                        | Explicit                    |                                                                                                          |              |                                               |            |           |  |
|                        | Teaching                    | 42                                                                                                       | 14           | 28                                            |            |           |  |
|                        |                             |                                                                                                          |              |                                               |            | 120       |  |
|                        | Seminar,                    |                                                                                                          |              |                                               |            |           |  |
|                        | Assignments                 |                                                                                                          |              |                                               | 36         |           |  |
|                        | etc.                        |                                                                                                          |              |                                               |            |           |  |
|                        |                             |                                                                                                          |              |                                               |            |           |  |
| Pre-requisite          | Basics of Algo              | orithms, l                                                                                               | Programn     | ning, and S                                   | tatistical | analysis. |  |



#### CO M 21 E 34 FUZZY LOGIC AND NATURE INSPIRED **COMPUTING**

#### **COURSE OUTCOMES (CO)**

| CO<br>No. | <b>Expected Course Outcome</b>                                                                                                                                                                                       | Learning<br>Domains | PSO No.    |  |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|------------|--|
| 1         | Comprehend the fuzzy logic and the concept of fuzziness involved in various systems.                                                                                                                                 | U                   | 2,10       |  |
| 2         | Understand the concepts of fuzzy sets, fuzzification, defuzzification, fuzzy rules, fuzzy inference systems etc. and apply fuzzy logic control to real time system.                                                  | U, A                | 1.2,3,10   |  |
| 3         | Understand the underlying nature inspired principles of<br>Genetic Algorithms, Ant Colony Algorithms, Particle<br>Swam algorithms and Artificial Bee Colony<br>algorithmsand the key ideas and steps involved in it. | U,A,An              | 1,2,3,10   |  |
| 4         | Compare and analyse different nature inspired computing approaches and understand the strength, weakness, and suitability and applications of each.                                                                  | U,An,A,E            | 1,2,3,10   |  |
| 5         | Apply nature-inspired algorithms to optimization, design and learning problems.                                                                                                                                      | S,A,An              | 1,2,3.4,10 |  |
| 6         | Evaluate performance of Nature inspired algorithm in context of problem solving in optimized manner                                                                                                                  | E,An                | 1,2,3,10   |  |
|           | *Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S)                                                                                                                          |                     |            |  |

Skill (S)

## **COURSE CONTENT Content for Classroom transaction (Sub-units)**

| Unit   | Course description                                                                                                                                                                                                                                                                                                  | Hrs | CO No. |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------|
|        |                                                                                                                                                                                                                                                                                                                     |     |        |
| UNIT I | Fuzzy Logic: Concepts of uncertainty and imprecision; Properties and operations on classical setsand fuzzy sets; Classical and fuzzy relations; Membership functions and its types; Fuzzification; Fuzzy rule-based systems; Defuzzification; Fuzzy propositions; Fuzzy extension principle; Fuzzyinference system, | 17  | 1,2    |



# CO M 21 E 34 FUZZY LOGIC AND NATURE INSPIRED COMPUTING

|          | Fuzzy Logic Control Systems, Recent                                                                                                                                                                                                                                                                                                                                                                     |    |         |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|---------|
|          | applications.                                                                                                                                                                                                                                                                                                                                                                                           |    |         |
| UNIT II  | Genetic Algorithms: Difference between traditional algorithms and Genetic Algorithm (GA);  Basic concepts of GA; Working principle; Encoding methods; Fitness function; GAOperators: Reproduction, Crossover, Mutation; Convergence of GA; Detailed algorithmic steps; Adjustment of parameters; Multicriteria optimization; Solution of typical problems using genetical gorithm; Recent applications. | 18 | 3       |
| UNIT III | Ant Colony Algorithms - Ant colony basics, hybrid ant system, ACO in combinatorial optimisation, variations of ACO.                                                                                                                                                                                                                                                                                     | 17 | 3,4,5,6 |
| UNIT IV  | Particle Swam algorithms - particles moves, particle swarm optimization, variable length PSO, applications of PSO.                                                                                                                                                                                                                                                                                      | 16 | 3,4,5,6 |
| UNIT V   | Artificial Bee Colony algorithms - ABC basics,<br>ABC in optimisation, multi-dimensional bee<br>colony algorithms, applications of bee algorithms,<br>Case studies and Hybrid Systems.                                                                                                                                                                                                                  | 16 | 3,4,5,6 |

| Teaching and<br>LearningApproac | Classroom Procedure (Mode of transaction)                             |  |  |
|---------------------------------|-----------------------------------------------------------------------|--|--|
| h                               | Direct Instruction: Explicit Teaching, E-learning                     |  |  |
|                                 | Interactive Instruction: Active co-operative learning, Seminar, Group |  |  |
|                                 | Assignments                                                           |  |  |
|                                 | Authentic learning:Library work and Group discussion, Presentation by |  |  |
|                                 | individual student/Group representative.                              |  |  |
| Assessment Types                | Mode of Assessment                                                    |  |  |
|                                 | A. Continuous Internal Assessment (CIA)                               |  |  |
|                                 | Internal Tests – Minimum two (Extended answers)                       |  |  |
|                                 | Seminar —                                                             |  |  |
|                                 | <ul> <li>Research Literature review</li> </ul>                        |  |  |



## CO M 21 E 34 FUZZY LOGIC AND NATURE INSPIRED COMPUTING

| <ul> <li>Report writing</li> </ul>                                     |
|------------------------------------------------------------------------|
| <ul> <li>Presentation</li> </ul>                                       |
| <ul> <li>Assignments – Written, Oral presentation and viva.</li> </ul> |
| Case study                                                             |
| B. Semester End Examination                                            |

- **1.** D. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning, Addison-Wesley.
- **2.** S. Rajasekaran and G. A. Vijayalakshmi Pai, Neural Networks, Fuzzy Logic and Genetic Algorithm: Synthesis and Applications, PHI.
- **3.** S. N. Sivanandam and S. N. Deepa, Principles of Soft Computing, 2nd ed., Wiley India.
- **4.** J. Zurada, Introduction to Artificial Neural Systems, Jaico Publishing House.
- **5.** G. Klir, B. Yuan, Fuzzy Sets and Fuzzy Logic: Theory and Applications, Pearson.
- **6.** John Yen, Reza Langari, Fuzzy Logic –Intelligence, Control and Information, PearsonEducation.
- **7.** Albert Y.Zomaya, "Handbook of Nature-Inspired and Innovative Computing", Springer.
- **8.** Floreano, D. and C. Mattiussi, "Bio-Inspired Artificial Intelligence: Theories, Methods, and Technologies", MIT Press.
- **9.** Leandro Nunes de Castro, "Fundamentals of Natural Computing, Basic Concepts, Algorithms and Applications" Chapman & Hall/ CRC, Taylor and Francis Group.
- **10.**Marco Dorrigo, Thomas Stutzle -" Ant Colony Optimization", Prentice Hall of India, New Delhi.

| Approval Date |  |
|---------------|--|
| Version       |  |



# CO M 21 E 34 FUZZY LOGIC AND NATURE INSPIRED COMPUTING

| Approval by         |  |
|---------------------|--|
| Implementation Date |  |



#### CO M 21 E 35 NATURAL LANGUAGE PROCESSING

| School Name                                 | School of Cor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | School of Computer Sciences |              |               |        |                            |
|---------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--------------|---------------|--------|----------------------------|
| Programme                                   | M.Sc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                             |              |               |        |                            |
| Course Name                                 | Natural Langu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | age Proce                   | essing       |               |        |                            |
| <b>Type of Course</b>                       | Elective                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |              |               |        |                            |
| Course Code                                 | CO M 21 E 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5                           |              |               |        |                            |
| Names of Academic<br>Staff & Qualifications | Prof. (Dr.) Pus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | shpalatha                   | K P, PhD     |               |        |                            |
| Course Summary & Justification              | The course provides an insight into the principles and methodological introduction to the most widely used and effective strategies for natural language processing. The course examines various NLP models and algorithms, text retrieval strategies, exploratory analysis, text summarization and text generation techniques. NLP has applications in many domains such as computer science, journalism, social science, psychology, political science etc. where processing of text data is crucial. |                             |              |               |        |                            |
| Semester                                    | III                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                             |              |               |        |                            |
| Total<br>StudentLearningTim<br>e (SLT)      | Learning<br>Approach                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Lectur<br>e                 | Tutoria<br>1 | Practical     | Others | Total<br>Learning<br>Hours |
|                                             | Explicit Teaching Seminar, Assignments etc.                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 42                          | 14           | 28            | 36     | 120                        |
| Pre-requisite                               | Basics of Alg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | gorithms a                  | and Statisti | ical analysis | S.     |                            |



#### CO M 21 E 35 NATURAL LANGUAGE PROCESSING

## **COURSE OUTCOMES (CO)**

| CO<br>No. | <b>Expected Course Outcome</b>                                                                                      | Learning<br>Domains | PSO No.  |  |
|-----------|---------------------------------------------------------------------------------------------------------------------|---------------------|----------|--|
| 1         | Understand the fundamental concepts and steps of natural language processing.                                       | U                   | 2,10     |  |
| 2         | Distinguish among the various NLP techniques, considering the assumptions, strengths, and weaknesses of each        | U, An, E            | 1,2,10   |  |
| 3         | Apply preliminary pre-processing on text data, extract features and tokenize it.                                    | A, An, C            | 1,2,3,10 |  |
| 4         | Develop a text classifier using machine learning algorithms - select appropriate model and analyse its performance. | R, U, C, E          | 1,2,3,10 |  |
| 5         | Apply various text retrieval methods and analyse large volume of text data generated                                | A, An               | 1,2,3,10 |  |
| 6         | Compare various text summarization and text generation methods                                                      | An, E               | 1,2,10   |  |
| 7         | Use NLP methods to analyze sentiment of a text document                                                             | A, An, C            | 1,2,3,10 |  |
|           | *Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S)                         |                     |          |  |

#### **COURSE CONTENT**

#### **Content for Classroom transaction (Sub-units)**

| Unit    | Course description                                                                                                                                                                                                              | Hrs | CO No. |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------|
| UNIT I  | Introduction to Natural Language Processing, History of NPL, Text Analytics and NLP, Various Steps in NLP, Tokenization, POS tagging, Stop word removal, Text normalisation, Spelling Correction, Stemming, Lemmatization, NER, | 16  | 1      |
|         | Word Sense Disambiguation, Sentence Boundary Detection, Data Collection, Preprocessing.                                                                                                                                         |     |        |
| UNIT II | Basic Feature Extraction Methods, Introduction,<br>Types of Data, Cleaning Text Data, Tokenizing<br>Texts with Different Packages – Keras and<br>TextBlob, Types of Tokenizers, Stemming,                                       | 22  | 2, 3   |



### CO M 21 E 35 NATURAL LANGUAGE PROCESSING

|          | Lemmatization, Singularizing and Pluralizing Words, Language Translation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |         |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|---------|
| UNIT III | Developing a Text classifier, Machine Learning, Various Clustering Algorithms, K-Means Clustering, Supervised Learning, Various Classifiers, Regression, Tree Methods, Sampling, Dimensionality Reduction, Deciding on a Model Type, Performance of a model, Saving and Loading Models.                                                                                                                                                                                                                                                                            | 26 | 4       |
| UNIT IV  | Collecting Text Data from the Web, Collecting Data by Scraping Web Pages, Requesting Content from Web Pages, Dealing with Semi-Structured Data, Dealing with Online JSON Files, XML Files, Using APIs to Retrieve Real-Time Data, Topic Modelling, Exploratory Data Analysis, Bag of Words, Modelling Algorithms, Latent Semantic Analysis, Latent Dirichlet Allocation, Topic Fingerprinting.                                                                                                                                                                     | 26 | 3,4,5   |
| UNIT V   | Text Summarisation and Text Generation, Introduction, Extractive Text Summarisation, Abstractive Text Summarisation, Summarizing Text using Gensim, Word Frequency, Generating Text with Markov Chains, Vector Representation, Encoding, Positional Character Level Encoding, One-Hot Encoding, Word-Level One Hot Encoding, Word Embeddings, Word2Vec, Using Pre-trained Word Vectors, Document Vectors Sentiment Analysis, Types of Sentiments, Applications, Tools, Python NLP Libraries, Understanding Data for Sentiment Analysis, Training Sentiment Models. | 22 | 2, 6, 7 |



#### CO M 21 E 35 NATURAL LANGUAGE PROCESSING

| Teaching and<br>Learning<br>Approach | Classroom Procedure (Mode of transaction) Direct Instruction: Explicit Teaching, E-learning Interactive Instruction: Active co-operative learning, Seminar, Group Assignments Authentic learning: Library work and Group discussion, Presentation by individual student/Group representative. |
|--------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Assessment<br>Types                  | Mode of Assessment                                                                                                                                                                                                                                                                            |
| Турсь                                | A. Continuous Internal Assessment (CIA)                                                                                                                                                                                                                                                       |
|                                      | <ul> <li>Internal Tests – Minimum two (Extended answers)</li> </ul>                                                                                                                                                                                                                           |
|                                      | Seminar —                                                                                                                                                                                                                                                                                     |
|                                      | <ul> <li>Research Literature review</li> </ul>                                                                                                                                                                                                                                                |
|                                      | <ul> <li>Report writing</li> </ul>                                                                                                                                                                                                                                                            |
|                                      | <ul> <li>Presentation</li> </ul>                                                                                                                                                                                                                                                              |
|                                      | <ul> <li>Assignments – Written, Oral presentation and viva.</li> </ul>                                                                                                                                                                                                                        |
|                                      | <ul><li>Case study</li><li>B. Semester End Examination</li></ul>                                                                                                                                                                                                                              |

#### REFERENCES

- 1. Dwight Gunning: Sohom Ghosh, Natural Language Processing fundamentals, Packt Publishing.
- 2. Palash Goyal and Sumit Pandey, Deep Learning for Natural Language Processing: Creating Neural Networks with Python, Apress.
- 3. Steven Bird, Ewan Klein, Edward Loper, *Natural Language Processing with Python Analyzing Text with the Natural Language Toolkit* (O'Reilly, website 2018) http://www.nltk.org/book/
- 4. Dipanjan Sarkar, *Text Analytics with Python* (Apress/Springer) https://link-springer-com.proxy.uchicago.edu/book/10.1007%2F978-1-4842-2388-8
- 5. Stanford University CS224n: Natural Language Processing with Deep Learning http://web.stanford.edu/class/cs224n/
- 6. Paul Vierthaler's Stylometric PCA and Network Data Explorer <a href="https://www.pvierth.com/pca">https://www.pvierth.com/pca</a>

| Approval Date       |  |
|---------------------|--|
| Version             |  |
| Approval by         |  |
| Implementation Date |  |



# CO M 21 E 36 DIGITAL SIGNAL PROCESSING AND SPEECH TECHNOLOGIES

| SchoolName                                  | School of Computer Sciences                                                                                                                                                                                                                                                         |             |              |            |         |                            |
|---------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------|------------|---------|----------------------------|
| Programme                                   | M. Sc.                                                                                                                                                                                                                                                                              |             |              |            |         |                            |
| Course Name                                 | Digital Signal Processing and Speech Technologies                                                                                                                                                                                                                                   |             |              |            |         |                            |
| Type of Course                              | Elective                                                                                                                                                                                                                                                                            | Elective    |              |            |         |                            |
| Course Code                                 | CO M 21 E 36                                                                                                                                                                                                                                                                        | Ó           |              |            |         |                            |
| Names of Academic<br>Staff & Qualifications | Prof. (Dr.) Anuj Mohamed<br>Ph. D.                                                                                                                                                                                                                                                  |             |              |            |         |                            |
| Course Summary &<br>Justification           | This course covers the concepts and techniques of modern digital signal processing which are fundamental to all the signal/speech processing, applications. The students will learn the basic concepts required to design and develop efficient speech/speaker recognition systems. |             |              |            |         |                            |
| Semester                                    | III                                                                                                                                                                                                                                                                                 |             |              |            |         |                            |
| Total<br>StudentLearningTim<br>e (SLT)      | Learning<br>Approach                                                                                                                                                                                                                                                                | Lectur<br>e | Tutoria<br>1 | Practica 1 | Other s | Total<br>Learning<br>Hours |
|                                             | Explicit Teaching Seminar, Assignments, etc.                                                                                                                                                                                                                                        | 42          | 14           | 28         | 36      | 120                        |
| Pre-requisite                               | Mathematical Foundations, Programming Skills                                                                                                                                                                                                                                        |             |              |            |         |                            |



### CO M 21 E 36 DIGITAL SIGNAL PROCESSING AND SPEECH TECHNOLOGIES

### **COURSE OUTCOMES (CO)**

| CO<br>No.    | <b>Expected Course Outcome</b>                                                                                                                       | Learning<br>Domains | PSO No.   |  |  |  |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-----------|--|--|--|
| 1            | Understand the basic concepts of speech and fundamental signal processing approaches to speech spectral analysis.                                    | U, A                | 1,3       |  |  |  |
| 2            | Analyze various features of speech and understand the techniques of extracting the features and pattern comparison techniques.                       | U, A, An            | 2, 3,4    |  |  |  |
| 3            | Understand statistical modeling using Hidden Markov Models and their implementation issues.                                                          | U, A, An,C          | 1, 2, 3,4 |  |  |  |
| 4            | Apply Viterbi Search and Baum-Welch algorithms                                                                                                       | U,An,A,E            | 1,2,3,8   |  |  |  |
| 5            | Understand the architecture and various models of continuous speech recognition system                                                               | U, An, A,           | 1,2,3,4   |  |  |  |
| 6            | Design and development speech and speaker recognition systems                                                                                        | U, An, A,<br>C,E    | 1,2,3,4,8 |  |  |  |
| 7            | Apply methods of text to speech synthesis for different applications.                                                                                | U,An,A              | 1,2,3     |  |  |  |
| 8            | Design and implement emotion recognition systems                                                                                                     | U, An, A,<br>C,E    | 1,2,3,4,8 |  |  |  |
| 9            | Design and implement efficient algorithms to solve various speech related problems and presenting the approach effectively with appropriate tools.   | U, A, An,<br>C,E    | 1,2,3,5,8 |  |  |  |
| 10           | Acquire knowledge and skills through self-paced and self-directed learning and adapt to changing trends through knowledge/skill updation/reskilling. | U, An, A,<br>C, E   | 7, 8, 10  |  |  |  |
| *Reme<br>(S) | *Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S)                                                          |                     |           |  |  |  |

### COURSE CONTENT

### **Content for Classroom transaction (Sub-units)**

| Unit   | Course description                                                                                                                                             | Hrs | CO No. |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------|
|        |                                                                                                                                                                |     |        |
| UNIT I | Introduction: Fundamentals of Speech, The Human Speech Production Mechanism, LTI Model for Speech Production, Nature of the Speech Signal, Linear Time-Varying | 18  |        |



## CO M 21 E 36 DIGITAL SIGNAL PROCESSING AND SPEECH TECHNOLOGIES

|          | Model, Phonetics, Types of Speech, Voiced and Unvoiced Decision Making, Audio File Formats: Nature of the WAV File.  Speech Fundamentals: Articulatory Phonetics – Production and Classification of Speech Sounds; Acoustic Phonetics, Acoustics of speech production; Review of Digital Signal Processing concepts; ShortTime Fourier Transform, Filter-                                                                                                                                                                                                                                                                  |    | 1,10     |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|----------|
| UNIT II  | Bank and LPC Methods.  Pitch and Formants, Fundamental Frequency or Pitch Frequency, Parallel Processing Approach for Calculation of Pitch Frequency, Pitch Period Measurement, Formants and Their Relation With LPC, Evaluation of Formants, Estimation of Formants. Homomorphic Processing, Cepstral Analysis of Speech: Cepstral Coefficients, The Auditory System as a Filter Bank, Mel Frequency Cepstral Coefficients, Perceptual Linear Prediction, Log Frequency Power Coefficients, RelAtive SpecTrAl Perceptual Linear Prediction, Short-Time Spectral Analysis of Speech, Wavelet Transform Analysis of Speech. | 16 | 2,9,10   |
| UNIT III | Hidden Markov Models: Markov Processes,<br>HMMs, Evaluation, Optimal State Sequence,<br>Viterbi Search, Baum-Welch Parameter Re-<br>estimation; Implementation issues.                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 14 | 3,4,9,10 |
| UNIT IV  | Speech Recognition Systems, Architecture of a Large Vocabulary Continuous Speech Recognition System, Deterministic and Statistical sequence Recognition for ASR, Statistical Pattern Recognition and Parameter Estimation, VQ-HMM-Based Speech Recognition, Discriminant Acoustic Probability Estimation, Word Spotting/Keyword Spotting, Speech Recognition and Understanding, Speaker Recognition, Speech Enhancement, Adaptive Echo Cancellation.                                                                                                                                                                       | 18 | 5,6,9,10 |
| UNIT V   | A Text-to-Speech System, Synthesizer Technologies, Speech Synthesis Using Other Methods, Speech Transformations, Emotion Recognition from Speech, Watermarking for Authentication of a Speech/Music Signal.                                                                                                                                                                                                                                                                                                                                                                                                                | 18 | 7,8,10   |



### CO M 21 E 36 DIGITAL SIGNAL PROCESSING AND SPEECH TECHNOLOGIES

| Teachinque   | Classroom Procedure (Mode of transaction)                                       |  |  |  |  |  |
|--------------|---------------------------------------------------------------------------------|--|--|--|--|--|
| and Learning | Direct Instruction: Brain storming lecture, Explicit Teaching, E-learning,      |  |  |  |  |  |
| Approach     | Interactive Instruction: Active co-operative learning, Seminar, Group           |  |  |  |  |  |
|              | Assignments                                                                     |  |  |  |  |  |
|              | Authentic learning: Library work and Group discussion, Presentation by          |  |  |  |  |  |
|              | individual student/Group representative.                                        |  |  |  |  |  |
|              |                                                                                 |  |  |  |  |  |
| Assessment   | Mode of Assessment                                                              |  |  |  |  |  |
| Types        | A. Continuous Internal Assessment (CIA)                                         |  |  |  |  |  |
|              | <ul> <li>Internal Tests – Minimum two (Extended answers / Practical)</li> </ul> |  |  |  |  |  |
|              | Seminar —                                                                       |  |  |  |  |  |
|              | <ul> <li>Research Literature review</li> </ul>                                  |  |  |  |  |  |
|              | ■ Report writing                                                                |  |  |  |  |  |
|              | <ul> <li>Presentation</li> </ul>                                                |  |  |  |  |  |
|              | Assignments – Written, Practical, Oral presentation and viva                    |  |  |  |  |  |
|              | Case study/Mini project                                                         |  |  |  |  |  |
|              | B. Semester End Examination                                                     |  |  |  |  |  |

#### **REFERENCES**

- **1.** S.D Apte, Speech and Audio Processing, Wiley India Edition.
- **2.** Rabiner Lawrence R., and Biing-Hwang Juang, Fundamentals of Speech Recognition, Prentice Hall International.
- **3.** D. Jurafsky and J. Martin, Speech and Language Processing An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition, Pearson Education.
- **4.** Gold Ben, Nelson Morgan, and Dan Ellis, Speech and Audio Signal Processing: Processing and Perception of Speech and Music, John Wiley & Sons.
- **5.** Benesty Jacob, M. Mohan Sondhi, and Yiteng Huang, Handbook of speech processing, Springer.
- **6.** Katagiri S., Handbook of Neural Networks for Speech Processing, Artech House, Boston
- **7.** John G. Proakis, Dimitris G. Manolakis, Digital Signal Processing, Principles, Algorithms, and Applications, Pearson Education / PHI, India.
- **8.** A.V. Oppenheim, R. W. Schaffer, Discrete Time Signal Processing, Prentice Hall of India, New Delhi.
- **9.** Andreas Antoniou, Digital Signal Processing, Tata McGraw Hill, NewDelhi.
- **10.**M. H. Hayes, Schaums Outlines of Digital Signal Processing, Tata McGraw Hill, India.



# CO M 21 E 36 DIGITAL SIGNAL PROCESSING AND SPEECH TECHNOLOGIES



### CO M 21 C 41 MAIN PROJECT & COMPREHENSIVE VIVA-VOCE

### **FOURTH SEMESTER**

| School Name                                 | School of Computer Sciences                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |              |           |        |                            |  |
|---------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|--------------|-----------|--------|----------------------------|--|
| Programme                                   | M.Sc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                        |              |           |        |                            |  |
| Course Name                                 | Main Projec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Main Project & Comprehensive Viva-voce |              |           |        |                            |  |
| Type of Course                              | Core                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                        |              |           |        |                            |  |
| Course Code                                 | CO M 21 C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 41                                     |              |           |        |                            |  |
| Names of Academic<br>Staff & Qualifications | Dr. Pushpala                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | tha K P, P                             | 'hD          |           |        |                            |  |
| Course Summary & Justification              | The course is meant for developing software/algorithms based on innovative ideas, applying all the knowledge and skills they acquired during the previous three semesters. At the end of the course, their practical knowledge, skills and ability in designing and developing software with new objectives are evaluated. This course also gives them an opportunity to understand what their strengths and weakness in the skills they were expected to be experts. This also improves their confidence in working in any research and development environment. The students are benefited in growing a confidence in attending technical interviews for job opportunities in any R&D divisions of any industry or in educational institutions.  This course gives them training and confidence in working in any real time research and development environment. The students are benefited in increasing job opportunities in any R&D divisions of any industry or in educational institutions. The course is aimed to evaluate the theoretical and practical knowledge they acquired in all the previous semesters of the programme. |                                        |              |           |        |                            |  |
| Semester                                    | IV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                        |              |           |        |                            |  |
| Total<br>StudentLearningTim<br>e (SLT)      | Learning<br>Approach                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Lecture                                | Tutoria<br>1 | Practical | Others | Total<br>Learning<br>Hours |  |
|                                             | Self<br>Practicing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                        |              |           |        | 120                        |  |
| Pre-requisite                               | Knowledge and practical experience in developing software using various IT technologies.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                        |              |           |        |                            |  |



### CO M 21 O 31 FUNDAMENTALS OF PROGRAMMING

| School Name                                 | School of Con                                                                                                                                                                                                                                                                                                                                                                        | School of Computer Sciences |              |           |        |                            |  |
|---------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--------------|-----------|--------|----------------------------|--|
| Programme                                   | M.Sc.                                                                                                                                                                                                                                                                                                                                                                                |                             |              |           |        |                            |  |
| Course Name                                 | Fundamental                                                                                                                                                                                                                                                                                                                                                                          | Fundamentals of Programming |              |           |        |                            |  |
| Type of Course                              | Open                                                                                                                                                                                                                                                                                                                                                                                 |                             |              |           |        |                            |  |
| Course Code                                 | CO M 21 O 3                                                                                                                                                                                                                                                                                                                                                                          | <b>31</b>                   |              |           |        |                            |  |
| Names of Academic<br>Staff & Qualifications | Ms. Jissy Liz                                                                                                                                                                                                                                                                                                                                                                        | Ms. Jissy Liz Jose, M. Tech |              |           |        |                            |  |
| Course Summary & Justification              | The course provides an insight into the basics of problem-solving techniques, object-oriented programming (C++), Open-Source Software (Linux), programming in Python and documentation & presentation tools. The course is fundamental in nearly any computer programming so that these concepts help to create computer applications that can be used to solve real-world problems. |                             |              |           |        |                            |  |
| Semester                                    | III                                                                                                                                                                                                                                                                                                                                                                                  |                             |              |           |        |                            |  |
| Total<br>StudentLearningTim<br>e (SLT)      | Learning<br>Approach                                                                                                                                                                                                                                                                                                                                                                 | Lectur<br>e                 | Tutoria<br>1 | Practical | Others | Total<br>Learning<br>Hours |  |
|                                             | Explicit Teaching Seminar, Assignments etc.                                                                                                                                                                                                                                                                                                                                          | 42                          | 14           | 28        | 36     | 120                        |  |
| Pre-requisite                               | Nil                                                                                                                                                                                                                                                                                                                                                                                  |                             |              |           |        |                            |  |



### CO M 21 O 31 FUNDAMENTALS OF PROGRAMMING

### **COURSE OUTCOMES (CO)**

| CO<br>No. | <b>Expected Course Outcome</b>                                                                                                                                                                  | Learning<br>Domains | PSO No.          |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|------------------|
| 1         | Acquire fundamental knowledge in machine language programming, assembly language programming and high-level language programming along with problem solving techniques and analytical thinking. | A                   | 1,2,3,4,10       |
| 2         | Understand fundamental programming concepts and methodologies that are essential to build good high level language programs in C++ and Python.                                                  | U                   | 1,2,3,10         |
| 3         | Apply the concepts of object-oriented programming for solving real world problems.                                                                                                              | R, A, An,<br>C      | 1,2,3,4,10       |
| 4         | Design, implement, test and debug programs in C++                                                                                                                                               | C, An, E            | 1,2,3,4,6,8,1    |
| 5         | Familiarise with open-source software like Linux, use Linux commands to manage files and directories and develop shell programs.                                                                | U, A                | 1,2,3,4,6,10     |
| 6         | Design, implement, test and debug programs in Python                                                                                                                                            | C, An, E            | 1,2,3,4,6,8,1    |
| 7         | Work with various documentation and presentation tools                                                                                                                                          | U, A, C             | 1,2,3,4,9,10     |
| *Rem      | ember (R), Understand (U), Apply (A), Analyse (An), Ev                                                                                                                                          | aluate (E), C       | reate (C), Skill |

### COURSE CONTENT

### **Content for Classroom transaction (Sub-units)**

| Unit   | Course description                                                                                          | Hrs | CO No. |
|--------|-------------------------------------------------------------------------------------------------------------|-----|--------|
|        |                                                                                                             |     |        |
| UNIT I | Introduction to Problem Solving, Steps for Problem Solving, Machine Language Programming, Assembly Language | 15  | 1      |



### CO M 21 O 31 FUNDAMENTALS OF PROGRAMMING

|          | Programming, High Level Language                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |       |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-------|
|          | Programming.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |       |
| UNIT II  | Basics of Object-Oriented Programming & C++, Introduction to Object Oriented Programming (OOP), Procedural vs. Object oriented programming, Concepts of OOP, Benefits and applications of OOP. Overview of C++, Program structure, Identifiers, Variables, Constants, enum, Data Types, Operators and Control Structures, Functions-declaration and definition, Arrays & Strings, Basics of Object & Classes, Member functions, Private and Public members, Scope resolution operator, Concept of inheritance, types of inheritance: single, multiple, multilevel, hierarchical, hybrid, protected members. | 18 | 2,3,4 |
| UNIT III | Concept of open-source software – GNU/Linux – Different distribution of Linux - Features of Linux, Advantages - Linux Architecture- Linux directory commands - Linux File commands - Shell Programming- Comparison of Windows and Linux operating systems.                                                                                                                                                                                                                                                                                                                                                  | 18 | 5     |
| UNIT IV  | History- Features in python- Working with python- Basic syntax-variables and data types-Operators-Conditional statements- Loops-Functions-Lists & Dictionaries- Modules.                                                                                                                                                                                                                                                                                                                                                                                                                                    | 18 | 6     |
| UNIT V   | Documentation and Presentation Tools.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 15 | 7     |

| Teaching and | Classroom Procedure (Mode of transaction)                              |  |
|--------------|------------------------------------------------------------------------|--|
| Learning     | Direct Instruction: Explicit Teaching, E-learning                      |  |
| Approach     | Interactive Instruction: Active co-operative learning, Seminar, Group  |  |
|              | Assignments                                                            |  |
|              | Authentic learning: Library work and Group discussion, Presentation by |  |
|              | individual student/Group representative.                               |  |
| Assessment   | Mode of Assessment                                                     |  |
| Types        | A. Continuous Internal Assessment (CIA)                                |  |
|              | <ul> <li>Internal Tests – Minimum two (Extended answers)</li> </ul>    |  |
|              | • Seminar –                                                            |  |
|              | <ul> <li>Research Literature review</li> </ul>                         |  |
|              | Report writing                                                         |  |



#### CO M 21 O 31 FUNDAMENTALS OF PROGRAMMING

| <ul> <li>Presentation</li> </ul>                                       |
|------------------------------------------------------------------------|
| <ul> <li>Assignments – Written, Oral presentation and viva.</li> </ul> |
| Case study                                                             |
| B. Semester End Examination                                            |

#### **REFERENCES**

- 1. Robert Lafore, "Object Oriented Programming in C++", McGraw Hill
- 2. Bjarne Stroustrup, "The C++ Programming Language", Addison Wesley
- 3. Christopher Negus, "Linux Bible", Wiley India Edition
- 4. Richard Blum & Christine Bresnahan, "Linux Command Line and Shell Scripting", Wiley
- 5. Timothy A. Budd, "Exploring Python", Mc-Graw Hill Education (India) Private Ltd
- **6.** Peter Norton & Alex Samuel, "Beginning Python", David Aitel-wrox publications

| Approval Date       |  |
|---------------------|--|
| Version             |  |
| Approval by         |  |
| Implementation Date |  |